Your browser doesn't support javascript.
loading
Asymmetric, nano-textured surfaces influence neuron viability and polarity.
Belu, Andreea; Yilmaz, Mehmet; Neumann, Elmar; Offenhäusser, Andreas; Demirel, Gokhan; Mayer, Dirk.
Afiliación
  • Belu A; Institute of Complex Systems, ICS-8, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany.
  • Yilmaz M; JARA-SOFT, Jülich, 52425, Germany.
  • Neumann E; Bio-inspired Materials Research Laboratory (BIMREL), Gazi University, Ankara, Turkey.
  • Offenhäusser A; Institute of Complex Systems, ICS-8, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany.
  • Demirel G; JARA-SOFT, Jülich, 52425, Germany.
  • Mayer D; Institute of Complex Systems, ICS-8, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany.
J Biomed Mater Res A ; 106(6): 1634-1645, 2018 06.
Article en En | MEDLINE | ID: mdl-29427541
ABSTRACT
Three dimensional, nanostructured surfaces have attracted considerable attention in biomedical research since they have proven to represent a powerful platform to influence cell fate. In particular, nanorods and nanopillars possess great potential for the control of cell adhesion and differentiation, gene and biomolecule delivery, optical and electrical stimulation and recording, as well as cell patterning. Here, we investigate the influence of asymmetric poly(dichloro-p-xylene) (PPX) columnar films on the adhesion and maturation of cortical neurons. We show that nanostructured films with dense, inclined polymer columns can support viable primary neuronal culture. The cell-nanostructure interface is characterized showing a minimal cell penetration but strong adhesion on the surface. Moreover, we quantify the influence of the nano-textured surface on the neural development (soma size, neuritogenesis, and polarity) in comparison to a planar PPX sample. We demonstrate that the nanostructures facilitates an enhancement in neurite branching as well as elongation of axons and growth cones. Furthermore, we show for the first time that the asymmetric orientation of polymeric nanocolumns strongly influences the initiation direction of the axon formation. These results evidence that 3D nano-topographies can significantly change neural development and can be used to engineer axon elongation. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A 106A 1634-1645, 2018.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Polímeros / Xilenos / Materiales Biocompatibles / Supervivencia Celular / Polaridad Celular / Nanoestructuras / Neuronas Límite: Animals Idioma: En Revista: J Biomed Mater Res A Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2018 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Polímeros / Xilenos / Materiales Biocompatibles / Supervivencia Celular / Polaridad Celular / Nanoestructuras / Neuronas Límite: Animals Idioma: En Revista: J Biomed Mater Res A Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2018 Tipo del documento: Article País de afiliación: Alemania