Polychromatic wave-optics models for image-plane speckle. 2. Unresolved objects.
Appl Opt
; 57(15): 4103-4110, 2018 May 20.
Article
en En
| MEDLINE
| ID: mdl-29791383
Polychromatic laser light can reduce speckle noise in many wavefront-sensing and imaging applications. To help quantify the achievable reduction in speckle noise, this study investigates the accuracy of three polychromatic wave-optics models under the specific conditions of an unresolved object. Because existing theory assumes a well-resolved object, laboratory experiments are used to evaluate model accuracy. The three models use Monte-Carlo averaging, depth slicing, and spectral slicing, respectively, to simulate the laser-object interaction. The experiments involve spoiling the temporal coherence of laser light via a fiber-based, electro-optic modulator. After the light scatters off of the rough object, speckle statistics are measured. The Monte-Carlo method is found to be highly inaccurate, while depth-slicing error peaks at 7.8% but is generally much lower in comparison. The spectral-slicing method is the most accurate, always producing results within the error bounds of the experiment.
Texto completo:
1
Bases de datos:
MEDLINE
Idioma:
En
Revista:
Appl Opt
Año:
2018
Tipo del documento:
Article