Your browser doesn't support javascript.
loading
Nature of the metal-insulator transition in few-unit-cell-thick LaNiO3 films.
Golalikhani, M; Lei, Q; Chandrasena, R U; Kasaei, L; Park, H; Bai, J; Orgiani, P; Ciston, J; Sterbinsky, G E; Arena, D A; Shafer, P; Arenholz, E; Davidson, B A; Millis, A J; Gray, A X; Xi, X X.
Afiliación
  • Golalikhani M; Department of Physics, Temple University, Philadelphia, PA, 19122, USA. maryam@temple.edu.
  • Lei Q; Department of Physics, Temple University, Philadelphia, PA, 19122, USA.
  • Chandrasena RU; Department of Physics, Temple University, Philadelphia, PA, 19122, USA.
  • Kasaei L; Temple Materials Institute, Temple University, Philadelphia, PA, 19122, USA.
  • Park H; Department of Physics, Temple University, Philadelphia, PA, 19122, USA.
  • Bai J; Department of Physics, University of Illinois at Chicago, Chicago, IL, 60607, USA.
  • Orgiani P; Materials Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA.
  • Ciston J; National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA.
  • Sterbinsky GE; CNR-SPIN, UOS Salerno, 84084, Fisciano, Italy.
  • Arena DA; CNR-IOM, TASC Laboratory in Area Science Park, 34139, Trieste, Italy.
  • Shafer P; National Center for Electron Microscopy Facility, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
  • Arenholz E; Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA.
  • Davidson BA; Department of Physics, University of South Florida, Tampa, FL, 33620, USA.
  • Millis AJ; Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
  • Gray AX; Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
  • Xi XX; Department of Physics, Temple University, Philadelphia, PA, 19122, USA.
Nat Commun ; 9(1): 2206, 2018 06 07.
Article en En | MEDLINE | ID: mdl-29880888
ABSTRACT
The nature of the metal-insulator transition in thin films and superlattices of LaNiO3 only a few unit cells in thickness remains elusive despite tremendous effort. Quantum confinement and epitaxial strain have been evoked as the mechanisms, although other factors such as growth-induced disorder, cation non-stoichiometry, oxygen vacancies, and substrate-film interface quality may also affect the observable properties of ultrathin films. Here we report results obtained for near-ideal LaNiO3 films with different thicknesses and terminations grown by atomic layer-by-layer laser molecular beam epitaxy on LaAlO3 substrates. We find that the room-temperature metallic behavior persists until the film thickness is reduced to an unprecedentedly small 1.5 unit cells (NiO2 termination). Electronic structure measurements using X-ray absorption spectroscopy and first-principles calculation suggest that oxygen vacancies existing in the films also contribute to the metal-insulator transition.

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos