Your browser doesn't support javascript.
loading
C5a Blockade Increases Regulatory T Cell Numbers and Protects Against Microvascular Loss and Epithelial Damage in Mouse Airway Allografts.
Khan, Mohammad Afzal; Alanazi, Fatimah; Ahmed, Hala Abdalrahman; Vater, Axel; Assiri, Abdullah Mohammed; Broering, Dieter Clemens.
Afiliación
  • Khan MA; Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
  • Alanazi F; Organ Transplant Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
  • Ahmed HA; Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
  • Vater A; Organ Transplant Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
  • Assiri AM; Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
  • Broering DC; Aptarion Biotech AG, Berlin, Germany.
Front Immunol ; 9: 1010, 2018.
Article en En | MEDLINE | ID: mdl-29881374
ABSTRACT
Microvascular injury during acute rejection has been associated with massive infiltration of CD4+ T effector cells, and the formation of complement products (C3a and C5a). Regulatory T cells (Tregs) are potent immunosuppressors of the adaptive immune system and have proven sufficient to rescue microvascular impairments. Targeting C5a has been linked with improved microvascular recovery, but its effects on the Treg and T effector balance is less well known. Here, we demonstrate the impact of C5a blockade on Treg induction and microvascular restoration in rejecting mouse airway allografts. BALB/c→C57BL/6 allografts were treated with a C5a-neutralizing l-aptamer (10 mg/kg, i.p. at d0 and every second day thereafter), and allografts were serially monitored for Treg infiltration, tissue oxygenation (tpO2), microvascular blood flow, and functional microvasculature between donor and recipients during allograft rejection. We demonstrated that C5a blocking significantly leads to enhanced presence of Tregs in the allograft, reinstates donor-recipient functional microvasculature, improves tpO2, microvascular blood flow, and epithelial repair, followed by an upregulation of IL-5, TGF-ß, IL-10 vascular endothelial growth factor, and ANGPT1 gene expression, while it maintained a healthy epithelium and prevented subepithelial collagen deposition at d28 posttransplantation. Together, these data indicate that inhibition of C5a signaling has potential to preserve microvasculature and rescue allograft from a sustained hypoxic/ischemic phase, limits airway tissue remodeling through the induction of Treg-mediated immune tolerance. These findings may be useful in designing anti-C5a therapy in combination with existing immunosuppressive regimens to rescue tissue/organ rejection.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Tráquea / Complemento C5a / Linfocitos T Reguladores / Células Epiteliales / Rechazo de Injerto Límite: Animals Idioma: En Revista: Front Immunol Año: 2018 Tipo del documento: Article País de afiliación: Arabia Saudita

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Tráquea / Complemento C5a / Linfocitos T Reguladores / Células Epiteliales / Rechazo de Injerto Límite: Animals Idioma: En Revista: Front Immunol Año: 2018 Tipo del documento: Article País de afiliación: Arabia Saudita