Your browser doesn't support javascript.
loading
Mechanical Stimuli in the Local In Vivo Environment in Bone: Computational Approaches Linking Organ-Scale Loads to Cellular Signals.
Paul, Graeme R; Malhotra, Angad; Müller, Ralph.
Afiliación
  • Paul GR; Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zürich, Switzerland.
  • Malhotra A; Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zürich, Switzerland.
  • Müller R; Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zürich, Switzerland. ram@ethz.ch.
Curr Osteoporos Rep ; 16(4): 395-403, 2018 08.
Article en En | MEDLINE | ID: mdl-29915967
ABSTRACT
PURPOSE OF REVIEW Connecting organ-scale loads to cellular signals in their local in vivo environment is a current challenge in the field of bone (re)modelling. Understanding this critical missing link would greatly improve our ability to anticipate mechanotransduction during different modes of stimuli and the resultant cellular responses. This review characterises computational approaches that could enable coupling links across the multiple scales of bone. RECENT

FINDINGS:

Current approaches using strain and fluid shear stress concepts have begun to link organ-scale loads to cellular signals; however, these approaches fail to capture localised micro-structural heterogeneities. Furthermore, models that incorporate downstream communication from osteocytes to osteoclasts, bone-lining cells and osteoblasts, will help improve the understanding of (re)modelling activities. Incorporating this potentially key information in the local in vivo environment will aid in developing multiscale models of mechanotransduction that can predict or help describe resultant biological events related to bone (re)modelling. Progress towards multiscale determination of the cell mechanical environment from organ-scale loads remains elusive. Construction of organ-, tissue- and cell-scale computational models that include localised environmental variation, strain amplification and intercellular communication mechanisms will ultimately help couple the hierarchal levels of bone.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Osteoblastos / Osteoclastos / Osteocitos / Estrés Mecánico / Comunicación Celular / Soporte de Peso / Remodelación Ósea / Mecanotransducción Celular Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Curr Osteoporos Rep Asunto de la revista: ORTOPEDIA Año: 2018 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Osteoblastos / Osteoclastos / Osteocitos / Estrés Mecánico / Comunicación Celular / Soporte de Peso / Remodelación Ósea / Mecanotransducción Celular Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Curr Osteoporos Rep Asunto de la revista: ORTOPEDIA Año: 2018 Tipo del documento: Article País de afiliación: Suiza