A machine learning approach to radiogenomics of breast cancer: a study of 922 subjects and 529 DCE-MRI features.
Br J Cancer
; 119(4): 508-516, 2018 08.
Article
en En
| MEDLINE
| ID: mdl-30033447
BACKGROUND: Recent studies showed preliminary data on associations of MRI-based imaging phenotypes of breast tumours with breast cancer molecular, genomic, and related characteristics. In this study, we present a comprehensive analysis of this relationship. METHODS: We analysed a set of 922 patients with invasive breast cancer and pre-operative MRI. The MRIs were analysed by a computer algorithm to extract 529 features of the tumour and the surrounding tissue. Machine-learning-based models based on the imaging features were trained using a portion of the data (461 patients) to predict the following molecular, genomic, and proliferation characteristics: tumour surrogate molecular subtype, oestrogen receptor, progesterone receptor and human epidermal growth factor status, as well as a tumour proliferation marker (Ki-67). Trained models were evaluated on the set of the remaining 461 patients. RESULTS: Multivariate models were predictive of Luminal A subtype with AUC = 0.697 (95% CI: 0.647-0.746, p < .0001), triple negative breast cancer with AUC = 0.654 (95% CI: 0.589-0.727, p < .0001), ER status with AUC = 0.649 (95% CI: 0.591-0.705, p < .001), and PR status with AUC = 0.622 (95% CI: 0.569-0.674, p < .0001). Associations between individual features and subtypes we also found. CONCLUSIONS: There is a moderate association between tumour molecular biomarkers and algorithmically assessed imaging features.
Texto completo:
1
Bases de datos:
MEDLINE
Asunto principal:
Neoplasias de la Mama
/
Imagen por Resonancia Magnética
/
Biomarcadores de Tumor
Tipo de estudio:
Prognostic_studies
Límite:
Adult
/
Aged
/
Aged80
/
Female
/
Humans
/
Middle aged
Idioma:
En
Revista:
Br J Cancer
Año:
2018
Tipo del documento:
Article
País de afiliación:
Estados Unidos