Visualized charge transfer processes in monolayer composition-graded WS2xSe2(1-x) lateral heterojunctions via ultrafast microscopy mapping.
Opt Express
; 26(12): 15867-15886, 2018 Jun 11.
Article
en En
| MEDLINE
| ID: mdl-30114841
Two-dimensional transitional metal dichalcogenides (TMDCs) based lateral heterojunctions have emerged as appealing and intriguing materials for applications in the next generation flexible nanoelectronics. The construction of depletion region near the in-plane interface brings rich opto-electrical dynamics, which is essential for future applications. Due to the synchronous requirement of spatial and time resolution, the study of lateral heterojunction dynamics remains a challenging issue. Herein, with a home-built spatiotemporal femtosecond transient absorption (TAS) spectroscopy platform, we have investigated the ultrafast photocarrier dynamics of monolayer spatial composition-graded WS2xSe2(1-x) lateral heterojunctions. At the alloy interface, the charge transfer (CT) processes have been visualized and referred to occur in 1 ps time scale. The mobility difference between electrons and holes results in the space modulation of the interface and a significant broadening of rising edge on the shell region. Moreover, carrier lifetime near the interface is extraordinarily extended by over 3 times from 153 ps to 678 ps. All these results unveil its great potential in designing future low cost logic devices and ultrafast optical applications.
Texto completo:
1
Bases de datos:
MEDLINE
Idioma:
En
Revista:
Opt Express
Asunto de la revista:
OFTALMOLOGIA
Año:
2018
Tipo del documento:
Article