Your browser doesn't support javascript.
loading
Modeling the Phase-Change Memory Material, Ge2Sb2Te5, with a Machine-Learned Interatomic Potential.
Mocanu, Felix C; Konstantinou, Konstantinos; Lee, Tae Hoon; Bernstein, Noam; Deringer, Volker L; Csányi, Gábor; Elliott, Stephen R.
Afiliación
  • Mocanu FC; Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , United Kingdom.
  • Konstantinou K; Engineering Laboratory , University of Cambridge , Cambridge CB2 1PZ , United Kingdom.
  • Lee TH; Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , United Kingdom.
  • Bernstein N; Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , United Kingdom.
  • Deringer VL; Center for Materials Physics and Technology , U.S. Naval Research Laboratory , Washington , District of Columbia 20375 , United States.
  • Csányi G; Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , United Kingdom.
  • Elliott SR; Engineering Laboratory , University of Cambridge , Cambridge CB2 1PZ , United Kingdom.
J Phys Chem B ; 122(38): 8998-9006, 2018 Sep 27.
Article en En | MEDLINE | ID: mdl-30173522
ABSTRACT
The phase-change material, Ge2Sb2Te5, is the canonical material ingredient for next-generation storage-class memory devices used in novel computing architectures, but fundamental questions remain regarding its atomic structure and physicochemical properties. Here, we introduce a machine-learning (ML)-based interatomic potential that enables large-scale atomistic simulations of liquid, amorphous, and crystalline Ge2Sb2Te5 with an unprecedented combination of speed and density functional theory (DFT) level of accuracy. Two applications exemplify the usefulness of such an ML-driven

approach:

we generate a 7200-atom structural model, hitherto inaccessible with DFT simulations, that affords new insight into the medium-range structural order and we create an ensemble of uncorrelated, smaller structures, for studies of their chemical bonding with statistical significance. Our work opens the way for new atomistic insights into the fascinating and chemically complex class of phase-change materials that are used in real nonvolatile memory devices.

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: J Phys Chem B Asunto de la revista: QUIMICA Año: 2018 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: J Phys Chem B Asunto de la revista: QUIMICA Año: 2018 Tipo del documento: Article País de afiliación: Reino Unido