Your browser doesn't support javascript.
loading
High-throughput ovarian follicle counting by an innovative deep learning approach.
Sonigo, Charlotte; Jankowski, Stéphane; Yoo, Olivier; Trassard, Olivier; Bousquet, Nicolas; Grynberg, Michael; Beau, Isabelle; Binart, Nadine.
Afiliación
  • Sonigo C; Inserm U1185, Univ Parus Sud, Université Paris Sud, 94276, Le Kremlin Bicetre, France. charlotte.sonigo@gmail.com.
  • Jankowski S; Quantmetry, 128 rue du Faubourg Saint Honoré, 75008, Paris, France.
  • Yoo O; Quantmetry, 128 rue du Faubourg Saint Honoré, 75008, Paris, France.
  • Trassard O; INSERM, Institut Biomédical de Bicêtre, 80 rue du Général Leclerc, 94276, Le Kremlin Bicêtre, France.
  • Bousquet N; Quantmetry, 128 rue du Faubourg Saint Honoré, 75008, Paris, France.
  • Grynberg M; Sorbonne Université, Laboratoire de Probabilité, Statistique et Modélisation, 4 place Jussieu, 75005, Paris, France.
  • Beau I; Institut de Mathématiques de Toulouse, Université Paul Sabatier, 118 route de Narbonne, 31400, Toulouse, France.
  • Binart N; Service de Médecine de la Reproduction et Préservation de la Fertilité, Hôpital Antoine Béclère, Hôpital Antoine Béclère, 92140, Clamart, France.
Sci Rep ; 8(1): 13499, 2018 09 10.
Article en En | MEDLINE | ID: mdl-30202115
The evaluation of the number of mouse ovarian primordial follicles (PMF) can provide important information about ovarian function, regulation of folliculogenesis or the impact of chemotherapy on fertility. This counting, usually performed by specialized operators, is a tedious, time-consuming but indispensable procedure.The development and increasing use of deep machine learning algorithms promise to speed up and improve this process. Here, we present a new methodology of automatically detecting and counting PMF, using convolutional neural networks driven by labelled datasets and a sliding window algorithm to select test data. Trained from a database of 9 millions of images extracted from mouse ovaries, and tested over two ovaries (3 millions of images to classify and 2 000 follicles to detect), the algorithm processes the digitized histological slides of a completed ovary in less than one minute, dividing the usual processing time by a factor of about 30. It also outperforms the measurements made by a pathologist through optical detection. Its ability to correct label errors enables conducting an active learning process with the operator, improving the overall counting iteratively. These results could be suitable to adapt the methodology to the human ovarian follicles by transfer learning.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Ensayos Analíticos de Alto Rendimiento / Aprendizaje Profundo / Folículo Ovárico Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Sci Rep Año: 2018 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Ensayos Analíticos de Alto Rendimiento / Aprendizaje Profundo / Folículo Ovárico Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Sci Rep Año: 2018 Tipo del documento: Article País de afiliación: Francia