Your browser doesn't support javascript.
loading
Bacteria-Based Materials for Stem Cell Engineering.
Hay, Jake J; Rodrigo-Navarro, Aleixandre; Petaroudi, Michaela; Bryksin, Anton V; García, Andrés J; Barker, Thomas H; Dalby, Matthew J; Salmeron-Sanchez, Manuel.
Afiliación
  • Hay JJ; Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, G12 8LT, UK.
  • Rodrigo-Navarro A; Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, G12 8LT, UK.
  • Petaroudi M; Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, G12 8LT, UK.
  • Bryksin AV; Molecular Evolution Core Facility, Georgia Institute of Technology, 950 Atlantic Dr NW, Atlanta, GA 30332, USA.
  • García AJ; Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA.
  • Barker TH; Department of Cell Biology, University of Virginia, 415 Lane Road, Charlottesville, Virginia, VA 22904, USA.
  • Dalby MJ; Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, G12 8LT, UK.
  • Salmeron-Sanchez M; Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, G12 8LT, UK.
Adv Mater ; 30(43): e1804310, 2018 Oct.
Article en En | MEDLINE | ID: mdl-30209838
ABSTRACT
Materials can be engineered to deliver specific biological cues that control stem cell growth and differentiation. However, current materials are still limited for stem cell engineering as stem cells are regulated by a complex biological milieu that requires spatiotemporal control. Here a new approach of using materials that incorporate designed bacteria as units that can be engineered to control human mesenchymal stem cells (hMSCs), in a highly dynamic-temporal manner, is presented. Engineered Lactococcus lactis spontaneously colonizes a variety of material surfaces (e.g., polymers, metals, and ceramics) and is able to maintain growth and induce differentiation of hMSCs in 2D/3D surfaces and hydrogels. Controlled, dynamic, expression of fibronectin fragments supports stem cell growth, whereas inducible-temporal regulation of secreted bone morphogenetic protein-2 drives osteogenesis in an on-demand manner. This approach enables stem cell technologies using material systems that host symbiotic interactions between eukaryotic and prokaryotic cells.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Lactococcus lactis / Materiales Biomiméticos / Células Madre Mesenquimatosas / Ingeniería Celular Límite: Humans Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2018 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Lactococcus lactis / Materiales Biomiméticos / Células Madre Mesenquimatosas / Ingeniería Celular Límite: Humans Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2018 Tipo del documento: Article País de afiliación: Reino Unido