Your browser doesn't support javascript.
loading
Grouped sparse Bayesian learning for voxel selection in multivoxel pattern analysis of fMRI data.
Wen, Zhenfu; Yu, Tianyou; Yu, Zhuliang; Li, Yuanqing.
Afiliación
  • Wen Z; Center for Brain Computer Interfaces and Brain Information Processing, South China University of Technology, Guangzhou, 510640, China; Guangzhou Key Laboratory of Brain Computer Interaction and Application, Guangzhou, 510640, China.
  • Yu T; Center for Brain Computer Interfaces and Brain Information Processing, South China University of Technology, Guangzhou, 510640, China; Guangzhou Key Laboratory of Brain Computer Interaction and Application, Guangzhou, 510640, China.
  • Yu Z; Center for Brain Computer Interfaces and Brain Information Processing, South China University of Technology, Guangzhou, 510640, China; Guangzhou Key Laboratory of Brain Computer Interaction and Application, Guangzhou, 510640, China.
  • Li Y; Center for Brain Computer Interfaces and Brain Information Processing, South China University of Technology, Guangzhou, 510640, China; Guangzhou Key Laboratory of Brain Computer Interaction and Application, Guangzhou, 510640, China. Electronic address: auyqli@scut.edu.cn.
Neuroimage ; 184: 417-430, 2019 01 01.
Article en En | MEDLINE | ID: mdl-30240902
ABSTRACT
Multivoxel pattern analysis (MVPA) methods have been widely applied in recent years to classify human brain states in functional magnetic resonance imaging (fMRI) data analysis. Voxel selection plays an important role in MVPA studies not only because it can improve decoding accuracy but also because it is useful for understanding brain functions. There are many voxel selection methods that have been proposed in fMRI literature. However, most of these methods either overlook the structure information of fMRI data or require additional cross-validation procedures to determine the hyperparameters of the models. In the present work, we proposed a voxel selection method for binary brain decoding called group sparse Bayesian logistic regression (GSBLR). This method utilizes the group sparse property of fMRI data by using a grouped automatic relevance determination (GARD) as a prior for model parameters. All the parameters in the GSBLR can be estimated automatically, thereby avoiding additional cross-validation. Experimental results based on two publicly available fMRI datasets and simulated datasets demonstrate that GSBLR achieved better classification accuracies and yielded more stable solutions than several state-of-the-art methods.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Encéfalo / Mapeo Encefálico / Reconocimiento de Normas Patrones Automatizadas / Imagen por Resonancia Magnética Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Neuroimage Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2019 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Encéfalo / Mapeo Encefálico / Reconocimiento de Normas Patrones Automatizadas / Imagen por Resonancia Magnética Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Neuroimage Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2019 Tipo del documento: Article País de afiliación: China