Your browser doesn't support javascript.
loading
TRIB3 Interacts With ß-Catenin and TCF4 to Increase Stem Cell Features of Colorectal Cancer Stem Cells and Tumorigenesis.
Hua, Fang; Shang, Shuang; Yang, Yu-Wei; Zhang, Hai-Zeng; Xu, Tian-Lei; Yu, Jiao-Jiao; Zhou, Dan-Dan; Cui, Bing; Li, Ke; Lv, Xiao-Xi; Zhang, Xiao-Wei; Liu, Shan-Shan; Yu, Jin-Mei; Wang, Feng; Zhang, Cheng; Huang, Bo; Hu, Zhuo-Wei.
Afiliación
  • Hua F; Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
  • Shang S; Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
  • Yang YW; Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
  • Zhang HZ; Institute of Colorectal Surgery, Cancer Hospital Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
  • Xu TL; Institute of Colorectal Surgery, Cancer Hospital Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
  • Yu JJ; Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
  • Zhou DD; Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
  • Cui B; Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
  • Li K; Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
  • Lv XX; Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
  • Zhang XW; Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
  • Liu SS; Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
  • Yu JM; Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
  • Wang F; Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
  • Zhang C; Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
  • Huang B; Institute of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
  • Hu ZW; Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China. Electronic address: huzhuowei@imm.ac.cn.
Gastroenterology ; 156(3): 708-721.e15, 2019 02.
Article en En | MEDLINE | ID: mdl-30365932
BACKGROUND & AIMS: Activation of Wnt signaling to ß-catenin contributes to the development of colorectal cancer (CRC). Expression of tribbles pseudo-kinase 3 (TRIB3) is increased in some colorectal tumors and associated with poor outcome. We investigated whether increased TRIB3 expression promotes stem cell features of CRC cells and tumor progression by interacting with the Wnt signaling pathway. METHODS: We performed studies with C57BL/6J-ApcMin/J mice injected with an adeno-associated virus vector that expresses a small hairpin RNA against Trib3 mRNA (ApcMin/J-Trib3KD) or a control vector (ApcMin/J-Ctrl). We created BALB/c mice that overexpress TRIB3 from an adeno-associated virus vector and mice with small hairpin RNA-mediated knockdown of ß-catenin. The mice were given azoxymethane followed by dextran sodium sulfate to induce colitis-associated cancer. Intestinal tissues were collected and analyzed by histology, gene expression profiling, immunohistochemistry, and immunofluorescence. Leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5)-positive (LGR5Pos) and LGR5-negative (LGR5Neg) HCT-8 CRC cells, with or without knockdown or transgenic expression of TRIB3, were sorted and analyzed in sphere-formation assays. We derived organoids from human and mouse colorectal tumors to analyze the function of TRIB3 and test the effect of a peptide inhibitor. Wnt signaling to ß-catenin was analyzed in dual luciferase reporter, chromatin precipitation, immunofluorescence, and immunoblot assays. Proteins that interact with TRIB3 were identified by immunoprecipitation. CRC cell lines were grown in nude mice as xenograft tumors. RESULTS: At 10 weeks of age, more than half the ApcMin/J-Ctrl mice developed intestinal high-grade epithelial neoplasia, whereas ApcMin/J-Trib3KD mice had no intestinal polyps and normal histology. Colon tissues from ApcMin/J-Trib3KD mice expressed lower levels of genes regulated by ß-catenin and genes associated with cancer stem cells. Mice with overexpression of Trib3 developed more tumors after administration of azoxymethane and dextran sodium sulfate than BALB/c mice. Mice with knockdown of ß-catenin had a lower tumor burden after administration of azoxymethane and dextran sodium sulfate, regardless of Trib3 overexpression. Intestinal tissues from mice with overexpression of Trib3 and knockdown of ß-catenin did not have activation of Wnt signaling or expression of genes regulated by ß-catenin. LGR5Pos cells sorted from HCT-8 cells expressed higher levels of TRIB3 than LGR5Neg cells. CRC cells that overexpressed TRIB3 had higher levels of transcription by ß-catenin and formed larger spheroids than control CRC cells; knockdown of ß-catenin prevented the larger organoid size caused by TRIB3 overexpression. TRIB3 interacted physically with ß-catenin and transcription factor 4 (TCF4). TRIB3 overexpression increased, and TRIB3 knockdown decreased, recruitment of TCF4 and ß-catenin to the promoter region of genes regulated by Wnt. Activated ß-catenin increased expression of TRIB3, indicating a positive-feedback loop. A peptide (P2-T3A6) that bound ß-catenin disrupted its interaction with TRIB3 and TCF4. In primary CRC cells and HCT-8 cells, P2-T3A6 decreased expression of genes regulated by ß-catenin and genes associated with cancer stem cells and decreased cell viability and migration. Injection of C57BL/6J-ApcMin/J mice with P2-T3A6 decreased the number and size of tumor nodules and colon expression of genes regulated by ß-catenin. P2-T3A6 increased 5-fluorouracil-induced death of CRC cells and survival times of mice with xenograft tumors. CONCLUSION: TRIB3 interacts with ß-catenin and TCF4 in intestine cells to increase expression of genes associated with cancer stem cells. Knockdown of TRIB3 decreases colon neoplasia in mice, migration of CRC cells, and their growth as xenograft tumors in mice. Strategies to block TRIB3 activity might be developed for treatment of CRC.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Neoplasias Colorrectales / Transformación Celular Neoplásica / Proteínas de Ciclo Celular / Beta Catenina / Carcinogénesis Tipo de estudio: Clinical_trials / Diagnostic_studies / Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Gastroenterology Año: 2019 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Neoplasias Colorrectales / Transformación Celular Neoplásica / Proteínas de Ciclo Celular / Beta Catenina / Carcinogénesis Tipo de estudio: Clinical_trials / Diagnostic_studies / Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Gastroenterology Año: 2019 Tipo del documento: Article