Your browser doesn't support javascript.
loading
Genomic Deoxyxylulose Phosphate Reductoisomerase (DXR) Mutations Conferring Resistance to the Antimalarial Drug Fosmidomycin in E. coli.
Pines, Gur; Oh, Eun Joong; Bassalo, Marcelo C; Choudhury, Alaksh; Garst, Andrew D; Fankhauser, Reilly G; Eckert, Carrie A; Gill, Ryan T.
Afiliación
  • Pines G; Renewable and Sustainable Energy Institute , University of Colorado Boulder , 027 UCB , Boulder , Colorado 80309 , United States.
  • Oh EJ; Department of Chemical and Biological Engineering , University of Colorado Boulder , 596 UCB , Boulder , Colorado 80309 , United States.
  • Bassalo MC; Renewable and Sustainable Energy Institute , University of Colorado Boulder , 027 UCB , Boulder , Colorado 80309 , United States.
  • Choudhury A; Department of Chemical and Biological Engineering , University of Colorado Boulder , 596 UCB , Boulder , Colorado 80309 , United States.
  • Garst AD; Renewable and Sustainable Energy Institute , University of Colorado Boulder , 027 UCB , Boulder , Colorado 80309 , United States.
  • Fankhauser RG; Department of Molecular, Cellular, and Developmental Biology , University of Colorado Boulder , 347 UCB , Boulder , Colorado 80309 , United States.
  • Eckert CA; Department of Chemical and Biological Engineering , University of Colorado Boulder , 596 UCB , Boulder , Colorado 80309 , United States.
  • Gill RT; Renewable and Sustainable Energy Institute , University of Colorado Boulder , 027 UCB , Boulder , Colorado 80309 , United States.
ACS Synth Biol ; 7(12): 2824-2832, 2018 12 21.
Article en En | MEDLINE | ID: mdl-30462485
ABSTRACT
Sequence to activity mapping technologies are rapidly developing, enabling the generation and isolation of mutations conferring novel phenotypes. Here we used the CRISPR enabled trackable genome engineering (CREATE) technology to investigate the inhibition of the essential ispC gene in its native genomic context in Escherichia coli. We created a full saturation library of 33 sites proximal to the ligand binding pocket and challenged this library with the antimalarial drug fosmidomycin, which targets the ispC gene product, DXR. This selection is especially challenging since it is relatively weak in E. coli, with multiple naturally occurring pathways for resistance. We identified several previously unreported mutations that confer fosmidomycin resistance, in highly conserved sites that also exist in pathogens including the malaria-inducing Plasmodium falciparum. This approach may have implications for the isolation of resistance-conferring mutations and may affect the design of future generations of fosmidomycin-based drugs.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Resistencia a Medicamentos / Isomerasas Aldosa-Cetosa / Fosfomicina / Antimaláricos Idioma: En Revista: ACS Synth Biol Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Resistencia a Medicamentos / Isomerasas Aldosa-Cetosa / Fosfomicina / Antimaláricos Idioma: En Revista: ACS Synth Biol Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos