Your browser doesn't support javascript.
loading
Motor primitives in space and time via targeted gain modulation in cortical networks.
Stroud, Jake P; Porter, Mason A; Hennequin, Guillaume; Vogels, Tim P.
Afiliación
  • Stroud JP; Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK. jake.stroud@cncb.ox.ac.uk.
  • Porter MA; Department of Mathematics, University of California Los Angeles, Los Angeles, CA, USA.
  • Hennequin G; Mathematical Institute, University of Oxford, Oxford, UK.
  • Vogels TP; CABDyN Complexity Centre, University of Oxford, Oxford, UK.
Nat Neurosci ; 21(12): 1774-1783, 2018 12.
Article en En | MEDLINE | ID: mdl-30482949
ABSTRACT
Motor cortex (M1) exhibits a rich repertoire of neuronal activities to support the generation of complex movements. Although recent neuronal-network models capture many qualitative aspects of M1 dynamics, they can generate only a few distinct movements. Additionally, it is unclear how M1 efficiently controls movements over a wide range of shapes and speeds. We demonstrate that modulation of neuronal input-output gains in recurrent neuronal-network models with a fixed architecture can dramatically reorganize neuronal activity and thus downstream muscle outputs. Consistent with the observation of diffuse neuromodulatory projections to M1, a relatively small number of modulatory control units provide sufficient flexibility to adjust high-dimensional network activity using a simple reward-based learning rule. Furthermore, it is possible to assemble novel movements from previously learned primitives, and one can separately change movement speed while preserving movement shape. Our results provide a new perspective on the role of modulatory systems in controlling recurrent cortical activity.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Aprendizaje / Corteza Motora / Movimiento / Red Nerviosa / Neuronas Tipo de estudio: Qualitative_research Límite: Animals Idioma: En Revista: Nat Neurosci Asunto de la revista: NEUROLOGIA Año: 2018 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Aprendizaje / Corteza Motora / Movimiento / Red Nerviosa / Neuronas Tipo de estudio: Qualitative_research Límite: Animals Idioma: En Revista: Nat Neurosci Asunto de la revista: NEUROLOGIA Año: 2018 Tipo del documento: Article País de afiliación: Reino Unido