Your browser doesn't support javascript.
loading
Analysis of NMR Spin-Relaxation Data Using an Inverse Gaussian Distribution Function.
Hsu, Andrew; Ferrage, Fabien; Palmer, Arthur G.
Afiliación
  • Hsu A; Department of Chemistry, Columbia University, New York, New York.
  • Ferrage F; Laboratoire des Biomolécules, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France.
  • Palmer AG; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York. Electronic address: agp6@columbia.edu.
Biophys J ; 115(12): 2301-2309, 2018 12 18.
Article en En | MEDLINE | ID: mdl-30503534
Spin relaxation in solution-state NMR spectroscopy is a powerful approach to explore the conformational dynamics of biological macromolecules. Probability distribution functions for overall or internal correlation times have been used previously to model spectral density functions central to spin-relaxation theory. Applications to biological macromolecules rely on transverse relaxation rate constants, and when studying nanosecond timescale motions, sampling at ultralow frequencies is often necessary. Consequently, appropriate distribution functions necessitate spectral density functions that are accurate and convergent as frequencies approach zero. In this work, the inverse Gaussian probability distribution function is derived from general properties of spectral density functions at low and high frequencies for macromolecules in solution, using the principle of maximal entropy. This normalized distribution function is first used to calculate the correlation function, followed by the spectral density function. The resulting model-free spectral density functions are finite at a frequency of zero and can be used to describe distributions of either overall or internal correlation times using the model-free ansatz. To validate the approach, 15N spin-relaxation data for the bZip transcription factor domain of the Saccharomyces cerevisiae protein GCN4, in the absence of cognate DNA, were analyzed using the inverse Gaussian probability distribution for intramolecular correlation times. The results extend previous models for the conformational dynamics of the intrinsically disordered, DNA-binding region of the bZip transcription factor domain.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Espectroscopía de Resonancia Magnética / Análisis de Datos Tipo de estudio: Prognostic_studies Idioma: En Revista: Biophys J Año: 2018 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Espectroscopía de Resonancia Magnética / Análisis de Datos Tipo de estudio: Prognostic_studies Idioma: En Revista: Biophys J Año: 2018 Tipo del documento: Article