Your browser doesn't support javascript.
loading
Anti-CRISPR-mediated control of gene editing and synthetic circuits in eukaryotic cells.
Nakamura, Muneaki; Srinivasan, Prashanth; Chavez, Michael; Carter, Matthew A; Dominguez, Antonia A; La Russa, Marie; Lau, Matthew B; Abbott, Timothy R; Xu, Xiaoshu; Zhao, Dehua; Gao, Yuchen; Kipniss, Nathan H; Smolke, Christina D; Bondy-Denomy, Joseph; Qi, Lei S.
Afiliación
  • Nakamura M; Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
  • Srinivasan P; Department of Chemical and Systems Biology, Stanford University, Stanford, CA, 94305, USA.
  • Chavez M; Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA.
  • Carter MA; Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
  • Dominguez AA; Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
  • La Russa M; Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
  • Lau MB; Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
  • Abbott TR; Department of Chemical and Systems Biology, Stanford University, Stanford, CA, 94305, USA.
  • Xu X; Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA.
  • Zhao D; Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
  • Gao Y; Department of Chemical and Systems Biology, Stanford University, Stanford, CA, 94305, USA.
  • Kipniss NH; Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA.
  • Smolke CD; Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
  • Bondy-Denomy J; International Christian School, 1 On Muk Ln, Sha Tin, 999077, Hong Kong SAR, China.
  • Qi LS; Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
Nat Commun ; 10(1): 194, 2019 01 14.
Article en En | MEDLINE | ID: mdl-30643127
Repurposed CRISPR-Cas molecules provide a useful tool set for broad applications of genomic editing and regulation of gene expression in prokaryotes and eukaryotes. Recent discovery of phage-derived proteins, anti-CRISPRs, which serve to abrogate natural CRISPR anti-phage activity, potentially expands the ability to build synthetic CRISPR-mediated circuits. Here, we characterize a panel of anti-CRISPR molecules for expanded applications to counteract CRISPR-mediated gene activation and repression of reporter and endogenous genes in various cell types. We demonstrate that cells pre-engineered with anti-CRISPR molecules become resistant to gene editing, thus providing a means to generate "write-protected" cells that prevent future gene editing. We further show that anti-CRISPRs can be used to control CRISPR-based gene regulation circuits, including implementation of a pulse generator circuit in mammalian cells. Our work suggests that anti-CRISPR proteins should serve as widely applicable tools for synthetic systems regulating the behavior of eukaryotic cells.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Bacteriófagos / Redes Reguladoras de Genes / Sistemas CRISPR-Cas / Edición Génica Límite: Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Bacteriófagos / Redes Reguladoras de Genes / Sistemas CRISPR-Cas / Edición Génica Límite: Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos