Your browser doesn't support javascript.
loading
Ultrathin Cobalt Oxide Layers as Electrocatalysts for High-Performance Flexible Zn-Air Batteries.
Zhou, Tianpei; Xu, Wanfei; Zhang, Nan; Du, Zhiyi; Zhong, Chengan; Yan, Wensheng; Ju, Huanxin; Chu, Wangsheng; Jiang, Hong; Wu, Changzheng; Xie, Yi.
Afiliación
  • Zhou T; Hefei National Laboratory for Physical Science at the Microscale, iChEM (Collaborative Innovation Centre of Chemistry for Energy Materials), Hefei Science Centre (CAS) and CAS Key Laboratory of Mechanical Behaviour and Design of Materials, University of Science and Technology of China, Hefei, Anhui,
  • Xu W; Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China.
  • Zhang N; National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China.
  • Du Z; Hefei National Laboratory for Physical Science at the Microscale, iChEM (Collaborative Innovation Centre of Chemistry for Energy Materials), Hefei Science Centre (CAS) and CAS Key Laboratory of Mechanical Behaviour and Design of Materials, University of Science and Technology of China, Hefei, Anhui,
  • Zhong C; Hefei National Laboratory for Physical Science at the Microscale, iChEM (Collaborative Innovation Centre of Chemistry for Energy Materials), Hefei Science Centre (CAS) and CAS Key Laboratory of Mechanical Behaviour and Design of Materials, University of Science and Technology of China, Hefei, Anhui,
  • Yan W; National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China.
  • Ju H; National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China.
  • Chu W; National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China.
  • Jiang H; Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China.
  • Wu C; Hefei National Laboratory for Physical Science at the Microscale, iChEM (Collaborative Innovation Centre of Chemistry for Energy Materials), Hefei Science Centre (CAS) and CAS Key Laboratory of Mechanical Behaviour and Design of Materials, University of Science and Technology of China, Hefei, Anhui,
  • Xie Y; Hefei National Laboratory for Physical Science at the Microscale, iChEM (Collaborative Innovation Centre of Chemistry for Energy Materials), Hefei Science Centre (CAS) and CAS Key Laboratory of Mechanical Behaviour and Design of Materials, University of Science and Technology of China, Hefei, Anhui,
Adv Mater ; 31(15): e1807468, 2019 Apr.
Article en En | MEDLINE | ID: mdl-30785222
Synergistic improvements in the electrical conductivity and catalytic activity for the oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) are of paramount importance for rechargeable metal-air batteries. In this study, one-nanometer-scale ultrathin cobalt oxide (CoOx ) layers are fabricated on a conducting substrate (i.e., a metallic Co/N-doped graphene substrate) to achieve superior bifunctional activity in both the ORR and OER and ultrahigh output power for flexible Zn-air batteries. Specifically, at the atomic scale, the ultrathin CoOx layers effectively accelerate electron conduction and provide abundant active sites. X-ray absorption spectroscopy reveals that the metallic Co/N-doped graphene substrate contributes to electron transfer toward the ultrathin CoOx layer, which is beneficial for the electrocatalytic process. The as-obtained electrocatalyst exhibits ultrahigh electrochemical activity with a positive half-wave potential of 0.896 V for ORR and a low overpotential of 370 mV at 10 mA cm-2 for OER. The flexible Zn-air battery built with this catalyst exhibits an ultrahigh specific power of 300 W gcat -1 , which is essential for portable devices. This work provides a new design pathway for electrocatalysts for high-performance rechargeable metal-air battery systems.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2019 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2019 Tipo del documento: Article