Your browser doesn't support javascript.
loading
A novel machine learning-derived decision tree including uPA/PAI-1 for breast cancer care.
Reix, Nathalie; Lodi, Massimo; Jankowski, Stéphane; Molière, Sébastien; Luporsi, Elisabeth; Leblanc, Suzanne; Scheer, Louise; Ibnouhsein, Issam; Benabu, Julie-Charlotte; Gabriele, Victor; Guggiola, Alberto; Lessinger, Jean-Marc; Chenard, Marie-Pierre; Alpy, Fabien; Bellocq, Jean-Pierre; Neuberger, Karl; Tomasetto, Catherine; Mathelin, Carole.
Afiliación
  • Reix N; Clinical Biologist, Laboratoire de Biochimie et Biologie Moléculaire, Hôpitaux Universitaires de Strasbourg, 1 place de l'Hôpital, Strasbourg, France.
  • Lodi M; ICube UMR 7357, Université de Strasbourg/CNRS, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 4 rue Kirschleger, Strasbourg, France.
  • Jankowski S; Unité de Sénologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
  • Molière S; Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Illkirch, France.
  • Luporsi E; Quantmetry, Paris, France.
  • Leblanc S; Service d'oncologie médicale, Centre Hospitalier Régional de Metz-Thionville, Hôpital de Mercy, Metz, France.
  • Scheer L; Service d'oncologie médicale, Centre Hospitalier Régional de Metz-Thionville, Hôpital de Mercy, Metz, France.
  • Ibnouhsein I; Laboratoire de Biochimie et Biologie Moléculaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
  • Benabu JC; Service de Pathologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
  • Gabriele V; Unité de Sénologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
  • Guggiola A; Quantmetry, Paris, France.
  • Lessinger JM; Unité de Sénologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
  • Chenard MP; Unité de Sénologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
  • Alpy F; Quantmetry, Paris, France.
  • Bellocq JP; Laboratoire de Biochimie et Biologie Moléculaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
  • Neuberger K; Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Illkirch, France.
  • Tomasetto C; Service de Pathologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
  • Mathelin C; Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Illkirch, France.
Clin Chem Lab Med ; 57(6): 901-910, 2019 05 27.
Article en En | MEDLINE | ID: mdl-30838840
Background uPA and PAI-1 are breast cancer biomarkers that evaluate the benefit of chemotherapy (CT) for HER2-negative, estrogen receptor-positive, low or intermediate grade patients. Our objectives were to observe clinical routine use of uPA/PAI-1 and to build a new therapeutic decision tree integrating uPA/PAI-1. Methods We observed the concordance between CT indications proposed by a canonical decision tree representative of French practices (not including uPA/PAI-1) and actual CT prescriptions decided by a medical board which included uPA/PAI-1. We used a method of machine learning for the analysis of concordant and non-concordant CT prescriptions to generate a novel scheme for CT indications. Results We observed a concordance rate of 71% between indications proposed by the canonical decision tree and actual prescriptions. Discrepancies were due to CT contraindications, high tumor grade and uPA/PAI-1 level. Altogether, uPA/PAI-1 were a decisive factor for the final decision in 17% of cases by avoiding CT prescription in two-thirds of cases and inducing CT in other cases. Remarkably, we noted that in routine practice, elevated uPA/PAI-1 levels seem not to be considered as a sufficient indication for CT for N≤3, Ki 67≤30% tumors, but are considered in association with at least one additional marker such as Ki 67>14%, vascular invasion and ER-H score <150. Conclusions This study highlights that in the routine clinical practice uPA/PAI-1 are never used as the sole indication for CT. Combined with other routinely used biomarkers, uPA/PAI-1 present an added value to orientate the therapeutic choice.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Neoplasias de la Mama / Activador de Plasminógeno de Tipo Uroquinasa / Inhibidor 1 de Activador Plasminogénico / Aprendizaje Automático / Antineoplásicos Tipo de estudio: Health_economic_evaluation / Prognostic_studies Límite: Adult / Aged / Female / Humans / Middle aged Idioma: En Revista: Clin Chem Lab Med Asunto de la revista: QUIMICA CLINICA / TECNICAS E PROCEDIMENTOS DE LABORATORIO Año: 2019 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Neoplasias de la Mama / Activador de Plasminógeno de Tipo Uroquinasa / Inhibidor 1 de Activador Plasminogénico / Aprendizaje Automático / Antineoplásicos Tipo de estudio: Health_economic_evaluation / Prognostic_studies Límite: Adult / Aged / Female / Humans / Middle aged Idioma: En Revista: Clin Chem Lab Med Asunto de la revista: QUIMICA CLINICA / TECNICAS E PROCEDIMENTOS DE LABORATORIO Año: 2019 Tipo del documento: Article País de afiliación: Francia