Outlier detection for questionnaire data in biobanks.
Int J Epidemiol
; 48(4): 1305-1315, 2019 08 01.
Article
en En
| MEDLINE
| ID: mdl-30848787
BACKGROUND: Biobanks increasingly collect, process and store omics with more conventional epidemiologic information necessitating considerable effort in data cleaning. An efficient outlier detection method that reduces manual labour is highly desirable. METHOD: We develop an unsupervised machine-learning method for outlier detection, namely kurPCA, that uses principal component analysis combined with kurtosis to ascertain the existence of outliers. In addition, we propose a novel regression adjustment approach to improve detection, namely the regression adjustment for data by systematic missing patterns (RAMP). RESULT: Application to epidemiological record data in a large-scale biobank (Tohoku Medical Megabank Organization, Japan) shows that a combination of kurPCA and RAMP effectively detects known errors or inconsistent patterns. CONCLUSIONS: We confirm through the results of the simulation and the application that our methods showed good performance. The proposed methods are useful for many practical analysis scenarios.
Palabras clave
Texto completo:
1
Bases de datos:
MEDLINE
Asunto principal:
Algoritmos
/
Encuestas y Cuestionarios
/
Modelos Estadísticos
/
Aprendizaje Automático
Tipo de estudio:
Diagnostic_studies
/
Guideline
/
Risk_factors_studies
Límite:
Humans
Idioma:
En
Revista:
Int J Epidemiol
Año:
2019
Tipo del documento:
Article
País de afiliación:
Japón