Your browser doesn't support javascript.
loading
Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH.
Eng, Chee-Huat Linus; Lawson, Michael; Zhu, Qian; Dries, Ruben; Koulena, Noushin; Takei, Yodai; Yun, Jina; Cronin, Christopher; Karp, Christoph; Yuan, Guo-Cheng; Cai, Long.
Afiliación
  • Eng CL; Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
  • Lawson M; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
  • Zhu Q; Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H.Chan School of Public Health, Boston, MA, USA.
  • Dries R; Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H.Chan School of Public Health, Boston, MA, USA.
  • Koulena N; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
  • Takei Y; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
  • Yun J; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
  • Cronin C; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
  • Karp C; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
  • Yuan GC; Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H.Chan School of Public Health, Boston, MA, USA.
  • Cai L; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA. lcai@caltech.edu.
Nature ; 568(7751): 235-239, 2019 04.
Article en En | MEDLINE | ID: mdl-30911168
Imaging the transcriptome in situ with high accuracy has been a major challenge in single-cell biology, which is particularly hindered by the limits of optical resolution and the density of transcripts in single cells1-5. Here we demonstrate an evolution of sequential fluorescence in situ hybridization (seqFISH+). We show that seqFISH+ can image mRNAs for 10,000 genes in single cells-with high accuracy and sub-diffraction-limit resolution-in the cortex, subventricular zone and olfactory bulb of mouse brain, using a standard confocal microscope. The transcriptome-level profiling of seqFISH+ allows unbiased identification of cell classes and their spatial organization in tissues. In addition, seqFISH+ reveals subcellular mRNA localization patterns in cells and ligand-receptor pairs across neighbouring cells. This technology demonstrates the ability to generate spatial cell atlases and to perform discovery-driven studies of biological processes in situ.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Encéfalo / ARN Mensajero / Hibridación Fluorescente in Situ / Análisis de la Célula Individual / Transcriptoma Límite: Animals Idioma: En Revista: Nature Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Encéfalo / ARN Mensajero / Hibridación Fluorescente in Situ / Análisis de la Célula Individual / Transcriptoma Límite: Animals Idioma: En Revista: Nature Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos