Shaping Electron Wave Functions in a Carbon Nanotube with a Parallel Magnetic Field.
Phys Rev Lett
; 122(8): 086802, 2019 Mar 01.
Article
en En
| MEDLINE
| ID: mdl-30932614
A magnetic field, through its vector potential, usually causes measurable changes in the electron wave function only in the direction transverse to the field. Here, we demonstrate experimentally and theoretically that, in carbon nanotube quantum dots combining cylindrical topology and bipartite hexagonal lattice, a magnetic field along the nanotube axis impacts also the longitudinal profile of the electronic states. With the high (up to 17 T) magnetic fields in our experiment, the wave functions can be tuned all the way from a "half-wave resonator" shape with nodes at both ends to a "quarter-wave resonator" shape with an antinode at one end. This in turn causes a distinct dependence of the conductance on the magnetic field. Our results demonstrate a new strategy for the control of wave functions using magnetic fields in quantum systems with a nontrivial lattice and topology.
Texto completo:
1
Bases de datos:
MEDLINE
Idioma:
En
Revista:
Phys Rev Lett
Año:
2019
Tipo del documento:
Article
País de afiliación:
Alemania