Rational Design of a Flexible CNTs@PDMS Film Patterned by Bio-Inspired Templates as a Strain Sensor and Supercapacitor.
Small
; 15(18): e1805493, 2019 05.
Article
en En
| MEDLINE
| ID: mdl-30945787
Flexible devices integrated with sensing and energy storage functions are highly desirable due to their potential application in wearable electronics and human motion detection. Here, a flexible film is designed in a facile and low-cost leaf templating process, comprising wrinkled carbon nanotubes (CNTs) as the conductive layer and patterned polydimethylsiloxane (PDMS) with bio-inspired microstructure as a soft substrate. Assembled from wrinkled CNTs on patterned PDMS film, a strain sensor is realized to possess sensitive resistance response against various deformations, producing a resistance response of 0.34%, 0.14%, and 9.1% under bending, pressing, and 20% strain, respectively. Besides, the strain sensor can reach a resistance response of 3.01 when stretched to 44%. Furthermore, through the electro-deposition of polyaniline, the CNTs film is developed into a supercapacitor, which exhibits a specific capacitance of 176 F g-1 at 1 A g-1 and a capacitance retention of 88% after 10 000 cycles. In addition, the fabricated supercapacitor shows super flexibility, delivering a capacitance retention of 98% after 180° bending for 100 cycles, 95% after 45° twisting for 100 cycles, and 98% after 100% stretching for 400 cycles. The superior capacitance stability demonstrates that the design of wrinkled CNTs-based electrodes fixed by microstructures is beneficial to the excellent electrochemical performance.
Texto completo:
1
Bases de datos:
MEDLINE
Idioma:
En
Revista:
Small
Asunto de la revista:
ENGENHARIA BIOMEDICA
Año:
2019
Tipo del documento:
Article
País de afiliación:
China