Your browser doesn't support javascript.
loading
Experimental investigation of performance differences between coherent Ising machines and a quantum annealer.
Hamerly, Ryan; Inagaki, Takahiro; McMahon, Peter L; Venturelli, Davide; Marandi, Alireza; Onodera, Tatsuhiro; Ng, Edwin; Langrock, Carsten; Inaba, Kensuke; Honjo, Toshimori; Enbutsu, Koji; Umeki, Takeshi; Kasahara, Ryoichi; Utsunomiya, Shoko; Kako, Satoshi; Kawarabayashi, Ken-Ichi; Byer, Robert L; Fejer, Martin M; Mabuchi, Hideo; Englund, Dirk; Rieffel, Eleanor; Takesue, Hiroki; Yamamoto, Yoshihisa.
Afiliación
  • Hamerly R; Research Laboratory of Electronics, Massachusetts Institute of Technology, 50 Vassar Street, Cambridge, MA 02139, USA.
  • Inagaki T; National Institute of Informatics, Hitotsubashi 2-1-2, Chiyoda-ku, Tokyo 101-8403, Japan.
  • McMahon PL; NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan.
  • Venturelli D; National Institute of Informatics, Hitotsubashi 2-1-2, Chiyoda-ku, Tokyo 101-8403, Japan.
  • Marandi A; E. L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA.
  • Onodera T; School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA.
  • Ng E; NASA Ames Research Center Quantum Artificial Intelligence Laboratory (QuAIL), Mail Stop 269-1, Moffett Field, CA 94035, USA.
  • Langrock C; USRA Research Institute for Advanced Computer Science (RIACS), 615 National Avenue, Mountain View, CA 94035, USA.
  • Inaba K; E. L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA.
  • Honjo T; California Institute of Technology, Pasadena, CA 91125, USA.
  • Enbutsu K; E. L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA.
  • Umeki T; E. L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA.
  • Kasahara R; E. L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA.
  • Utsunomiya S; NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan.
  • Kako S; NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan.
  • Kawarabayashi KI; NTT Device Technology Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan.
  • Byer RL; NTT Device Technology Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan.
  • Fejer MM; NTT Device Technology Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan.
  • Mabuchi H; National Institute of Informatics, Hitotsubashi 2-1-2, Chiyoda-ku, Tokyo 101-8403, Japan.
  • Englund D; National Institute of Informatics, Hitotsubashi 2-1-2, Chiyoda-ku, Tokyo 101-8403, Japan.
  • Rieffel E; National Institute of Informatics, Hitotsubashi 2-1-2, Chiyoda-ku, Tokyo 101-8403, Japan.
  • Takesue H; E. L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA.
  • Yamamoto Y; E. L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA.
Sci Adv ; 5(5): eaau0823, 2019 May.
Article en En | MEDLINE | ID: mdl-31139743
ABSTRACT
Physical annealing systems provide heuristic approaches to solving combinatorial optimization problems. Here, we benchmark two types of annealing machines-a quantum annealer built by D-Wave Systems and measurement-feedback coherent Ising machines (CIMs) based on optical parametric oscillators-on two problem classes, the Sherrington-Kirkpatrick (SK) model and MAX-CUT. The D-Wave quantum annealer outperforms the CIMs on MAX-CUT on cubic graphs. On denser problems, however, we observe an exponential penalty for the quantum annealer [exp(-αDW N 2)] relative to CIMs [exp(-αCIM N)] for fixed anneal times, both on the SK model and on 50% edge density MAX-CUT. This leads to a several orders of magnitude time-to-solution difference for instances with over 50 vertices. An optimal-annealing time analysis is also consistent with a substantial projected performance difference. The difference in performance between the sparsely connected D-Wave machine and the fully-connected CIMs provides strong experimental support for efforts to increase the connectivity of quantum annealers.

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Sci Adv Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Sci Adv Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos