Your browser doesn't support javascript.
loading
Optimization of q-space sampling for mean apparent propagator MRI metrics using a genetic algorithm.
Olson, Daniel V; Arpinar, Volkan E; Muftuler, L Tugan.
Afiliación
  • Olson DV; Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA; Magnetic Resonance Imaging, GE Healthcare, Waukesha, WI, USA. Electronic address: olsondv@gmail.com.
  • Arpinar VE; Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA; Center for Imaging Research, Medical College of Wisconsin, Milwaukee, WI, USA.
  • Muftuler LT; Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA; Center for Imaging Research, Medical College of Wisconsin, Milwaukee, WI, USA.
Neuroimage ; 199: 237-244, 2019 10 01.
Article en En | MEDLINE | ID: mdl-31163267
Mean Apparent Propagator (MAP) MRI is a recently introduced technique to estimate the diffusion probability density function (PDF) robustly. Using the estimated PDF, MAP MRI then calculates zero-displacement and non-Gaussianity metrics, which might better characterize tissue microstructure compared to diffusion tensor imaging or diffusion kurtosis imaging. However, intensive q-space sampling required for MAP MRI limits its widespread adoption. A reduced q-space sampling scheme that maintains the accuracy of the derived metrics would make it more practical. A heuristic approach for acquiring MAP MRI with fewer q-space samples has been introduced earlier with scan duration of less than 10 minutes. However, the sampling scheme was not optimized systematically to preserve the accuracy of the model metrics. In this work, a genetic algorithm is implemented to determine optimal q-space subsampling schemes for MAP MRI that will keep total scan time under 10 min. Results show that the metrics derived from the optimized schemes more closely match those computed from the full set, especially in dense fiber tracts such as the corpus callosum.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Encéfalo / Imagen por Resonancia Magnética / Neuroimagen / Modelos Biológicos Tipo de estudio: Prognostic_studies Límite: Adult / Humans / Male Idioma: En Revista: Neuroimage Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2019 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Encéfalo / Imagen por Resonancia Magnética / Neuroimagen / Modelos Biológicos Tipo de estudio: Prognostic_studies Límite: Adult / Humans / Male Idioma: En Revista: Neuroimage Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2019 Tipo del documento: Article