Optimization of q-space sampling for mean apparent propagator MRI metrics using a genetic algorithm.
Neuroimage
; 199: 237-244, 2019 10 01.
Article
en En
| MEDLINE
| ID: mdl-31163267
Mean Apparent Propagator (MAP) MRI is a recently introduced technique to estimate the diffusion probability density function (PDF) robustly. Using the estimated PDF, MAP MRI then calculates zero-displacement and non-Gaussianity metrics, which might better characterize tissue microstructure compared to diffusion tensor imaging or diffusion kurtosis imaging. However, intensive q-space sampling required for MAP MRI limits its widespread adoption. A reduced q-space sampling scheme that maintains the accuracy of the derived metrics would make it more practical. A heuristic approach for acquiring MAP MRI with fewer q-space samples has been introduced earlier with scan duration of less than 10â¯minutes. However, the sampling scheme was not optimized systematically to preserve the accuracy of the model metrics. In this work, a genetic algorithm is implemented to determine optimal q-space subsampling schemes for MAP MRI that will keep total scan time under 10â¯min. Results show that the metrics derived from the optimized schemes more closely match those computed from the full set, especially in dense fiber tracts such as the corpus callosum.
Palabras clave
Texto completo:
1
Bases de datos:
MEDLINE
Asunto principal:
Encéfalo
/
Imagen por Resonancia Magnética
/
Neuroimagen
/
Modelos Biológicos
Tipo de estudio:
Prognostic_studies
Límite:
Adult
/
Humans
/
Male
Idioma:
En
Revista:
Neuroimage
Asunto de la revista:
DIAGNOSTICO POR IMAGEM
Año:
2019
Tipo del documento:
Article