Your browser doesn't support javascript.
loading
Mendelian Randomization Analysis Reveals a Causal Influence of Circulating Sclerostin Levels on Bone Mineral Density and Fractures.
Zheng, Jie; Maerz, Winfried; Gergei, Ingrid; Kleber, Marcus; Drechsler, Christiane; Wanner, Christoph; Brandenburg, Vincent; Reppe, Sjur; Gautvik, Kaare M; Medina-Gomez, Carolina; Shevroja, Enisa; Gilly, Arthur; Park, Young-Chan; Dedoussis, George; Zeggini, Eleftheria; Lorentzon, Mattias; Henning, Petra; Lerner, Ulf H; Nilsson, Karin H; Movérare-Skrtic, Sofia; Baird, Denis; Elsworth, Benjamin; Falk, Louise; Groom, Alix; Capellini, Terence D; Grundberg, Elin; Nethander, Maria; Ohlsson, Claes; Davey Smith, George; Tobias, Jonathan H.
Afiliación
  • Zheng J; MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, UK.
  • Maerz W; Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria.
  • Gergei I; SYNLAB Academy, SYNLAB Holding Deutschland GmbH, Mannheim, Germany.
  • Kleber M; Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
  • Drechsler C; Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
  • Wanner C; Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
  • Brandenburg V; Department of Cardiology and Nephrology, Rhein-Maas-Klinikum Würselen, Germany.
  • Reppe S; Department of Cardiology and Nephrology, Rhein-Maas-Klinikum Würselen, Germany.
  • Gautvik KM; Department of Cardiology and Nephrology, Rhein-Maas-Klinikum Würselen, Germany.
  • Medina-Gomez C; Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.
  • Shevroja E; Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway.
  • Gilly A; Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway.
  • Park YC; Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
  • Dedoussis G; Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
  • Zeggini E; Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
  • Lorentzon M; Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
  • Henning P; Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
  • Lerner UH; Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
  • Nilsson KH; University of Cambridge, Cambridge, UK.
  • Movérare-Skrtic S; Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece.
  • Baird D; Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
  • Elsworth B; Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
  • Falk L; Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
  • Groom A; Geriatric Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
  • Capellini TD; Geriatric Medicine Clinic, Sahlgrenska University Hospital, Mölndal, Sweden.
  • Grundberg E; Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
  • Nethander M; Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
  • Ohlsson C; Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
  • Davey Smith G; Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
  • Tobias JH; MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, UK.
J Bone Miner Res ; 34(10): 1824-1836, 2019 10.
Article en En | MEDLINE | ID: mdl-31170332
ABSTRACT
In bone, sclerostin is mainly osteocyte-derived and plays an important local role in adaptive responses to mechanical loading. Whether circulating levels of sclerostin also play a functional role is currently unclear, which we aimed to examine by two-sample Mendelian randomization (MR). A genetic instrument for circulating sclerostin, derived from a genomewide association study (GWAS) meta-analysis of serum sclerostin in 10,584 European-descent individuals, was examined in relation to femoral neck bone mineral density (BMD; n = 32,744) in GEFOS and estimated bone mineral density (eBMD) by heel ultrasound (n = 426,824) and fracture risk (n = 426,795) in UK Biobank. Our GWAS identified two novel serum sclerostin loci, B4GALNT3 (standard deviation [SD]) change in sclerostin per A allele (ß = 0.20, p = 4.6 × 10-49 ) and GALNT1 (ß = 0.11 per G allele, p = 4.4 × 10-11 ). B4GALNT3 is an N-acetyl-galactosaminyltransferase, adding a terminal LacdiNAc disaccharide to target glycocoproteins, found to be predominantly expressed in kidney, whereas GALNT1 is an enzyme causing mucin-type O-linked glycosylation. Using these two single-nucleotide polymorphisms (SNPs) as genetic instruments, MR revealed an inverse causal relationship between serum sclerostin and femoral neck BMD (ß = -0.12, 95% confidence interval [CI] -0.20 to -0.05) and eBMD (ß = -0.12, 95% CI -0.14 to -0.10), and a positive relationship with fracture risk (ß = 0.11, 95% CI 0.01 to 0.21). Colocalization analysis demonstrated common genetic signals within the B4GALNT3 locus for higher sclerostin, lower eBMD, and greater B4GALNT3 expression in arterial tissue (probability >99%). Our findings suggest that higher sclerostin levels are causally related to lower BMD and greater fracture risk. Hence, strategies for reducing circulating sclerostin, for example by targeting glycosylation enzymes as suggested by our GWAS results, may prove valuable in treating osteoporosis. © 2019 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Densidad Ósea / Proteínas Adaptadoras Transductoras de Señales / Fracturas Óseas / Análisis de la Aleatorización Mendeliana Tipo de estudio: Clinical_trials / Prognostic_studies / Systematic_reviews Límite: Aged / Animals / Child / Humans / Middle aged Idioma: En Revista: J Bone Miner Res Asunto de la revista: METABOLISMO / ORTOPEDIA Año: 2019 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Densidad Ósea / Proteínas Adaptadoras Transductoras de Señales / Fracturas Óseas / Análisis de la Aleatorización Mendeliana Tipo de estudio: Clinical_trials / Prognostic_studies / Systematic_reviews Límite: Aged / Animals / Child / Humans / Middle aged Idioma: En Revista: J Bone Miner Res Asunto de la revista: METABOLISMO / ORTOPEDIA Año: 2019 Tipo del documento: Article País de afiliación: Reino Unido