Your browser doesn't support javascript.
loading
Editing the Sickle Cell Disease Mutation in Human Hematopoietic Stem Cells: Comparison of Endonucleases and Homologous Donor Templates.
Romero, Zulema; Lomova, Anastasia; Said, Suzanne; Miggelbrink, Alexandra; Kuo, Caroline Y; Campo-Fernandez, Beatriz; Hoban, Megan D; Masiuk, Katelyn E; Clark, Danielle N; Long, Joseph; Sanchez, Julie M; Velez, Miriam; Miyahira, Eric; Zhang, Ruixue; Brown, Devin; Wang, Xiaoyan; Kurmangaliyev, Yerbol Z; Hollis, Roger P; Kohn, Donald B.
Afiliación
  • Romero Z; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
  • Lomova A; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA.
  • Said S; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
  • Miggelbrink A; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
  • Kuo CY; Division of Allergy & Immunology, Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA, USA.
  • Campo-Fernandez B; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
  • Hoban MD; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
  • Masiuk KE; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
  • Clark DN; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
  • Long J; Division of Allergy & Immunology, Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA, USA.
  • Sanchez JM; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
  • Velez M; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
  • Miyahira E; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
  • Zhang R; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
  • Brown D; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
  • Wang X; Department of Medicine Statistics Core, University of California, Los Angeles, Los Angeles, CA, USA.
  • Kurmangaliyev YZ; Department of Biological Chemistry, HHMI, University of California, Los Angeles, Los Angeles, CA, USA.
  • Hollis RP; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
  • Kohn DB; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Pediatrics, David Geffen School of Medicine, Univer
Mol Ther ; 27(8): 1389-1406, 2019 08 07.
Article en En | MEDLINE | ID: mdl-31178391
ABSTRACT
Site-specific correction of a point mutation causing a monogenic disease in autologous hematopoietic stem and progenitor cells (HSPCs) can be used as a treatment of inherited disorders of the blood cells. Sickle cell disease (SCD) is an ideal model to investigate the potential use of gene editing to transvert a single point mutation at the ß-globin locus (HBB). We compared the activity of zinc-finger nucleases (ZFNs) and CRISPR/Cas9 for editing, and homologous donor templates delivered as single-stranded oligodeoxynucleotides (ssODNs), adeno-associated virus serotype 6 (AAV6), integrase-deficient lentiviral vectors (IDLVs), and adenovirus 5/35 serotype (Ad5/35) to transvert the base pair responsible for SCD in HBB in primary human CD34+ HSPCs. We found that the ZFNs and Cas9 directed similar frequencies of nuclease activity. In vitro, AAV6 led to the highest frequencies of homology-directed repair (HDR), but levels of base pair transversions were significantly reduced when analyzing cells in vivo in immunodeficient mouse xenografts, with similar frequencies achieved with either AAV6 or ssODNs. AAV6 also caused significant impairment of colony-forming progenitors and human cell engraftment. Gene correction in engrafting hematopoietic stem cells may be limited by the capacity of the cells to mediate HDR, suggesting additional manipulations may be needed for high-efficiency gene correction in HSPCs.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Células Madre Hematopoyéticas / Globinas beta / Edición Génica / Anemia de Células Falciformes / Mutación Límite: Humans Idioma: En Revista: Mol Ther Asunto de la revista: BIOLOGIA MOLECULAR / TERAPEUTICA Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Células Madre Hematopoyéticas / Globinas beta / Edición Génica / Anemia de Células Falciformes / Mutación Límite: Humans Idioma: En Revista: Mol Ther Asunto de la revista: BIOLOGIA MOLECULAR / TERAPEUTICA Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos