Your browser doesn't support javascript.
loading
Dual wavelength lasing of InGaN/GaN axial-heterostructure nanorod lasers.
Chun, So Yeon; Yoo, Gang Yeol; Jeong, Seonghyun; Park, Seung Min; Eo, Yun Jae; Kim, Woong; Do, Young Rag; Song, Jae Kyu.
Afiliación
  • Chun SY; Department of Chemistry, Kyung Hee University, Seoul 130-701, Korea. jaeksong@khu.ac.kr.
Nanoscale ; 11(30): 14186-14193, 2019 Aug 01.
Article en En | MEDLINE | ID: mdl-31267116
ABSTRACT
Optical confinement effects are investigated in InGaN/GaN axial-heterostructure nanolasers. Cylindrical nanorods with GaN/InGaN/GaN structures are prepared using combined processes of top-down and bottom-up approaches. The lasing of InGaN is observed at a low threshold (1 µJ cm-2), which is attributed to an efficient carrier transfer process from GaN to InGaN. The lasing of GaN is also found in the threshold range of 10-20 µJ cm-2 with a superlinear increase in emission intensity and high quality factors (Q = 1000), implying that dual wavelengths of lasing are tunable as a function of excitation intensity. The non-classical Fabry-Pérot modes suggest strong light-matter interactions in nanorods by optical confinement effects. The polarization of lasing indicates that the non-classical modes are in the identical transverse mode, which supports the formation of exciton-polaritons in nanorods. Polariton lasing in a single axial-heterostructure nanorod is observed for the first time, which proposes small-sized light sources with low threshold, polarized light, and tunable wavelengths in a single nanorod.

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Nanoscale Año: 2019 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Nanoscale Año: 2019 Tipo del documento: Article