Your browser doesn't support javascript.
loading
NEMA NU 2-2007 performance characteristics of GE Signa integrated PET/MR for different PET isotopes.
Caribé, Paulo R R V; Koole, M; D'Asseler, Yves; Deller, Timothy W; Van Laere, K; Vandenberghe, S.
Afiliación
  • Caribé PRRV; Medical Imaging and Signal Processing - MEDISIP, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium. paulo.caribe@ugent.be.
  • Koole M; Division of Nuclear Medicine and Molecular Imaging, UZ/KU Leuven, Herestraat 49 B-3000, Leuven, Belgium. paulo.caribe@ugent.be.
  • D'Asseler Y; Division of Nuclear Medicine and Molecular Imaging, UZ/KU Leuven, Herestraat 49 B-3000, Leuven, Belgium.
  • Deller TW; Medical Imaging and Signal Processing - MEDISIP, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
  • Van Laere K; GE Healthcare, Waukesha, WI, 53188-1678, USA.
  • Vandenberghe S; Division of Nuclear Medicine and Molecular Imaging, UZ/KU Leuven, Herestraat 49 B-3000, Leuven, Belgium.
EJNMMI Phys ; 6(1): 11, 2019 Jul 04.
Article en En | MEDLINE | ID: mdl-31273558
ABSTRACT

BACKGROUND:

Fully integrated PET/MR systems are being used frequently in clinical research and routine. National Electrical Manufacturers Association (NEMA) characterization of these systems is generally done with 18F which is clinically the most relevant PET isotope. However, other PET isotopes, such as 68Ga and 90Y, are gaining clinical importance as they are of specific interest for oncological applications and for follow-up of 90Y-based radionuclide therapy. These isotopes have a complex decay scheme with a variety of prompt gammas in coincidence. 68Ga and 90Y have higher positron energy and, because of the larger positron range, there may be interference with the magnetic field of the MR compared to 18F. Therefore, it is relevant to determine the performance of PET/MR for these clinically relevant and commercially available isotopes.

METHODS:

NEMA NU 2-2007 performance measurements were performed for characterizing the spatial resolution, sensitivity, image quality, and the accuracy of attenuation and scatter corrections for 18F, 68Ga, and 90Y. Scatter fraction and noise equivalent count rate (NECR) tests were performed using 18F and 68Ga. All phantom data were acquired on the GE Signa integrated PET/MR system, installed in UZ Leuven, Belgium.

RESULTS:

18F, 68Ga, and 90Y NEMA performance tests resulted in substantially different system characteristics. In comparison with 18F, the spatial resolution is about 1 mm larger in the axial direction for 68Ga and no significative effect was found for 90Y. The impact of this lower resolution is also visible in the recovery coefficients of the smallest spheres of 68Ga in image quality measurements, where clearly lower values are obtained. For 90Y, the low number of counts leads to a large variability in the image quality measurements. The primary factor for the sensitivity change is the scale factor related to the positron emission fraction. There is also an impact on the peak NECR, which is lower for 68Ga than for 18F and appears at higher activities.

CONCLUSIONS:

The system performance of GE Signa integrated PET/MR was substantially different, in terms of NEMA spatial resolution, image quality, and NECR for 68Ga and 90Y compared to 18F. But these differences are compensated by the PET/MR scanner technologies and reconstructions methods.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: EJNMMI Phys Año: 2019 Tipo del documento: Article País de afiliación: Bélgica

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: EJNMMI Phys Año: 2019 Tipo del documento: Article País de afiliación: Bélgica