Your browser doesn't support javascript.
loading
Automated brain extraction of multisequence MRI using artificial neural networks.
Isensee, Fabian; Schell, Marianne; Pflueger, Irada; Brugnara, Gianluca; Bonekamp, David; Neuberger, Ulf; Wick, Antje; Schlemmer, Heinz-Peter; Heiland, Sabine; Wick, Wolfgang; Bendszus, Martin; Maier-Hein, Klaus H; Kickingereder, Philipp.
Afiliación
  • Isensee F; Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany.
  • Schell M; Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany.
  • Pflueger I; Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.
  • Brugnara G; Department of Radiology, DKFZ, Heidelberg, Germany.
  • Bonekamp D; Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.
  • Neuberger U; Department of Radiology, DKFZ, Heidelberg, Germany.
  • Wick A; Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.
  • Schlemmer HP; Neurology Clinic, Heidelberg University Hospital, Heidelberg, Germany.
  • Heiland S; Department of Radiology, DKFZ, Heidelberg, Germany.
  • Wick W; Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.
  • Bendszus M; Neurology Clinic, Heidelberg University Hospital, Heidelberg, Germany.
  • Maier-Hein KH; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
  • Kickingereder P; Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.
Hum Brain Mapp ; 40(17): 4952-4964, 2019 12 01.
Article en En | MEDLINE | ID: mdl-31403237
Brain extraction is a critical preprocessing step in the analysis of neuroimaging studies conducted with magnetic resonance imaging (MRI) and influences the accuracy of downstream analyses. The majority of brain extraction algorithms are, however, optimized for processing healthy brains and thus frequently fail in the presence of pathologically altered brain or when applied to heterogeneous MRI datasets. Here we introduce a new, rigorously validated algorithm (termed HD-BET) relying on artificial neural networks that aim to overcome these limitations. We demonstrate that HD-BET outperforms six popular, publicly available brain extraction algorithms in several large-scale neuroimaging datasets, including one from a prospective multicentric trial in neuro-oncology, yielding state-of-the-art performance with median improvements of +1.16 to +2.50 points for the Dice coefficient and -0.66 to -2.51 mm for the Hausdorff distance. Importantly, the HD-BET algorithm, which shows robust performance in the presence of pathology or treatment-induced tissue alterations, is applicable to a broad range of MRI sequence types and is not influenced by variations in MRI hardware and acquisition parameters encountered in both research and clinical practice. For broader accessibility, the HD-BET prediction algorithm is made freely available (www.neuroAI-HD.org) and may become an essential component for robust, automated, high-throughput processing of MRI neuroimaging data.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Encéfalo / Imagen por Resonancia Magnética / Redes Neurales de la Computación Tipo de estudio: Clinical_trials / Prognostic_studies Límite: Humans Idioma: En Revista: Hum Brain Mapp Asunto de la revista: CEREBRO Año: 2019 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Encéfalo / Imagen por Resonancia Magnética / Redes Neurales de la Computación Tipo de estudio: Clinical_trials / Prognostic_studies Límite: Humans Idioma: En Revista: Hum Brain Mapp Asunto de la revista: CEREBRO Año: 2019 Tipo del documento: Article País de afiliación: Alemania