Your browser doesn't support javascript.
loading
Home care aides' observations and machine learning algorithms for the prediction of visits to emergency departments by older community-dwelling individuals receiving home care assistance: A proof of concept study.
Veyron, Jacques-Henri; Friocourt, Patrick; Jeanjean, Olivier; Luquel, Laurence; Bonifas, Nicolas; Denis, Fabrice; Belmin, Joël.
Afiliación
  • Veyron JH; Agence Nationale d'Appui à la performance (ANAP), Paris, France.
  • Friocourt P; Service de médecine interne gériatrique, Hôpital Simone Veil, Blois, France.
  • Jeanjean O; Pôle de gériatrie, SSR, Soins Palliatifs, Groupe hospitalier Nord-Essonne, Longjumeau, France.
  • Luquel L; Hôpital privé gériatrique Les Magnolias, Ballainvilliers, France.
  • Bonifas N; Ecole Polytechnique, Palaiseau, France.
  • Denis F; Institut Inter-Regional de Cancérologie Jean Bernard, Le Mans, France.
  • Belmin J; Hôpital Charles Foix, Assistance Publique-Hôpitaux de Paris, Ivry-sur-Seine, France.
PLoS One ; 14(8): e0220002, 2019.
Article en En | MEDLINE | ID: mdl-31408458
BACKGROUND: Older individuals receiving home assistance are at high risk for emergency visits and unplanned hospitalization. Anticipating their health difficulties could prevent these events. This study investigated the effectiveness of an at-home monitoring method using social workers' observations to predict risk for 7- and 14-day emergency department (ED) visits. METHODS: This was a prospective cohort study of persons ≥75 years, living at home and receiving assistance from home care aides (HCA) at 6 French facilities. After each home visit, HCAs reported on participants' functional status using a smartphone application that recorded 27 functional items about each participant (e.g., ability to stand, move, eat, mood, loneliness). We recorded ED visits. Finally, we used machine learning techniques (i.e., leveraging random forest predictors) to develop a 7- and 14-day predictive algorithm for the risk of ED visit. RESULTS: The study included 301 participants, and the HCA made 9,987 observations. Over the mean 10-month follow-up, 97 participants (32%) had at least one ED visit. Modeling techniques identified 9 contributory factors from the longitudinal records of the HCA and developed a predictive algorithm for the risk of ED visit. The predictive performance (i.e., the area under the ROC curve) was 0.70 at 7 days and 0.67 at 14 days. INTERPRETATION: For frail elders receiving in-home care, information on functional status collected by HCA helps predict the risk of ED visits 7 to 14 days in advance. A survey system for real-time identification of risks could be developed using this exploratory work.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Algoritmos / Auxiliares de Salud a Domicilio / Servicio de Urgencia en Hospital / Vida Independiente / Aprendizaje Automático / Servicios de Atención de Salud a Domicilio / Hospitalización Tipo de estudio: Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Aged / Aged80 / Female / Humans / Male Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2019 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Algoritmos / Auxiliares de Salud a Domicilio / Servicio de Urgencia en Hospital / Vida Independiente / Aprendizaje Automático / Servicios de Atención de Salud a Domicilio / Hospitalización Tipo de estudio: Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Aged / Aged80 / Female / Humans / Male Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2019 Tipo del documento: Article País de afiliación: Francia