Your browser doesn't support javascript.
loading
Cross-resistance of the pathogenic fungus Alternaria alternata to fungicides with different modes of action.
Yang, Li-Na; He, Meng-Han; Ouyang, Hai-Bing; Zhu, Wen; Pan, Zhe-Chao; Sui, Qi-Jun; Shang, Li-Ping; Zhan, Jiasui.
Afiliación
  • Yang LN; Key Lab for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
  • He MH; Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, 350002, Fujian, China.
  • Ouyang HB; Key Lab for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
  • Zhu W; Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, 350002, Fujian, China.
  • Pan ZC; Key Lab for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
  • Sui QJ; Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, 350002, Fujian, China.
  • Shang LP; Key Lab for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
  • Zhan J; Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, 350002, Fujian, China.
BMC Microbiol ; 19(1): 205, 2019 09 02.
Article en En | MEDLINE | ID: mdl-31477005
ABSTRACT

BACKGROUND:

Cross-resistance, a phenomenon that a pathogen resists to one antimicrobial compound also resists to one or several other compounds, is one of major threats to human health and sustainable food production. It usually occurs among antimicrobial compounds sharing the mode of action. In this study, we determined the sensitivity profiles of Alternaria alternata, a fungal pathogen which can cause diseases in many crops to two fungicides (mancozeb and difenoconazole) with different mode of action using a large number of isolates (234) collected from seven potato fields across China.

RESULTS:

We found that pathogens could also develop cross resistance to fungicides with different modes of action as indicated by a strong positive correlation between mancozeb and difenoconazole tolerances to A. alternata. We also found a positive association between mancozeb tolerance and aggressiveness of A. alternata, suggesting no fitness penalty of developing mancozeb resistance in the pathogen and hypothesize that mechanisms such as antimicrobial compound efflux and detoxification that limit intercellular accumulation of natural/synthetic chemicals in pathogens might account for the cross-resistance and the positive association between pathogen aggressiveness and mancozeb tolerance.

CONCLUSIONS:

The detection of cross-resistance among different classes of fungicides suggests that the mode of action alone may not be an adequate sole criterion to determine what components to use in the mixture and/or rotation of fungicides in agricultural and medical sects. Similarly, the observation of a positive association between the pathogen's aggressiveness and tolerance to mancozeb suggests that intensive application of site non-specific fungicides might simultaneously lead to reduced fungicide resistance and enhanced ability to cause diseases in pathogen populations, thereby posing a greater threat to agricultural production and human health. In this case, the use of evolutionary principles in closely monitoring populations and the use of appropriate fungicide applications are important for effective use of the fungicides and durable infectious disease management.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Farmacorresistencia Fúngica / Alternaria / Fungicidas Industriales País/Región como asunto: Asia Idioma: En Revista: BMC Microbiol Asunto de la revista: MICROBIOLOGIA Año: 2019 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Farmacorresistencia Fúngica / Alternaria / Fungicidas Industriales País/Región como asunto: Asia Idioma: En Revista: BMC Microbiol Asunto de la revista: MICROBIOLOGIA Año: 2019 Tipo del documento: Article País de afiliación: China