Your browser doesn't support javascript.
loading
Mitochondrial PE potentiates respiratory enzymes to amplify skeletal muscle aerobic capacity.
Heden, Timothy D; Johnson, Jordan M; Ferrara, Patrick J; Eshima, Hiroaki; Verkerke, Anthony R P; Wentzler, Edward J; Siripoksup, Piyarat; Narowski, Tara M; Coleman, Chanel B; Lin, Chien-Te; Ryan, Terence E; Reidy, Paul T; de Castro Brás, Lisandra E; Karner, Courtney M; Burant, Charles F; Maschek, J Alan; Cox, James E; Mashek, Douglas G; Kardon, Gabrielle; Boudina, Sihem; Zeczycki, Tonya N; Rutter, Jared; Shaikh, Saame Raza; Vance, Jean E; Drummond, Micah J; Neufer, P Darrell; Funai, Katsuhiko.
Afiliación
  • Heden TD; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA.
  • Johnson JM; Department of Kinesiology, East Carolina University, Greenville, NC, USA.
  • Ferrara PJ; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA.
  • Eshima H; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA.
  • Verkerke ARP; Department of Kinesiology, East Carolina University, Greenville, NC, USA.
  • Wentzler EJ; Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA.
  • Siripoksup P; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA.
  • Narowski TM; Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, USA.
  • Coleman CB; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA.
  • Lin CT; Department of Kinesiology, East Carolina University, Greenville, NC, USA.
  • Ryan TE; Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA.
  • Reidy PT; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA.
  • de Castro Brás LE; Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, USA.
  • Karner CM; Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA.
  • Burant CF; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA.
  • Maschek JA; Department of Kinesiology, East Carolina University, Greenville, NC, USA.
  • Cox JE; Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA.
  • Mashek DG; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA.
  • Kardon G; Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, USA.
  • Boudina S; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA.
  • Zeczycki TN; Department of Kinesiology, East Carolina University, Greenville, NC, USA.
  • Rutter J; Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA.
  • Shaikh SR; Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, USA.
  • Vance JE; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA.
  • Drummond MJ; Department of Kinesiology, East Carolina University, Greenville, NC, USA.
  • Neufer PD; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA.
  • Funai K; Department of Kinesiology, East Carolina University, Greenville, NC, USA.
Sci Adv ; 5(9): eaax8352, 2019 09.
Article en En | MEDLINE | ID: mdl-31535029
Exercise capacity is a strong predictor of all-cause mortality. Skeletal muscle mitochondrial respiratory capacity, its biggest contributor, adapts robustly to changes in energy demands induced by contractile activity. While transcriptional regulation of mitochondrial enzymes has been extensively studied, there is limited information on how mitochondrial membrane lipids are regulated. Here, we show that exercise training or muscle disuse alters mitochondrial membrane phospholipids including phosphatidylethanolamine (PE). Addition of PE promoted, whereas removal of PE diminished, mitochondrial respiratory capacity. Unexpectedly, skeletal muscle-specific inhibition of mitochondria-autonomous synthesis of PE caused respiratory failure because of metabolic insults in the diaphragm muscle. While mitochondrial PE deficiency coincided with increased oxidative stress, neutralization of the latter did not rescue lethality. These findings highlight the previously underappreciated role of mitochondrial membrane phospholipids in dynamically controlling skeletal muscle energetics and function.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Consumo de Oxígeno / Fosfatidiletanolaminas / Condicionamiento Físico Animal / Músculo Esquelético / Proteínas Mitocondriales / Mitocondrias Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Sci Adv Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Consumo de Oxígeno / Fosfatidiletanolaminas / Condicionamiento Físico Animal / Músculo Esquelético / Proteínas Mitocondriales / Mitocondrias Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Sci Adv Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos