Your browser doesn't support javascript.
loading
Effects of Encapsulated Cells on the Physical-Mechanical Properties and Microstructure of Gelatin Methacrylate Hydrogels.
Krishnamoorthy, Srikumar; Noorani, Behnam; Xu, Changxue.
Afiliación
  • Krishnamoorthy S; Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, TX 79409, USA. srikumar.krishnamoorthy@ttu.edu.
  • Noorani B; School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA. behnam.noorani@ttuhsc.edu.
  • Xu C; Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, TX 79409, USA. changxue.xu@ttu.edu.
Int J Mol Sci ; 20(20)2019 Oct 12.
Article en En | MEDLINE | ID: mdl-31614713
ABSTRACT
Gelatin methacrylate (GelMA) has been gaining popularity in recent years as a photo-crosslinkable biomaterial widely used in a variety of bioprinting and tissue engineering applications. Several studies have established the effects of process-based and material-based parameters on the physical-mechanical properties and microstructure of GelMA hydrogels. However, the effect of encapsulated cells on the physical-mechanical properties and microstructure of GelMA hydrogels has not been fully understood. In this study, 3T3 fibroblasts were encapsulated at different cell densities within the GelMA hydrogels and incubated over 96 h. The effects of encapsulated cells were investigated in terms of mechanical properties (tensile modulus and strength), physical properties (swelling and degradation), and microstructure (pore size). Cell viability was also evaluated to confirm that most cells were alive during the incubation. It was found that with an increase in cell density, the mechanical properties decreased, while the degradation and the pore size increased.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Resistencia a la Tracción / Hidrogeles / Andamios del Tejido / Gelatina / Metacrilatos Límite: Animals Idioma: En Revista: Int J Mol Sci Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Resistencia a la Tracción / Hidrogeles / Andamios del Tejido / Gelatina / Metacrilatos Límite: Animals Idioma: En Revista: Int J Mol Sci Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos