Your browser doesn't support javascript.
loading
A Self-Assembled 2D Thermofunctional Material for Radiative Cooling.
Jaramillo-Fernandez, Juliana; Whitworth, Guy L; Pariente, Jose Angel; Blanco, Alvaro; Garcia, Pedro D; Lopez, Cefe; Sotomayor-Torres, Clivia M.
Afiliación
  • Jaramillo-Fernandez J; Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain.
  • Whitworth GL; Universidad Autónoma de Barcelona, 08010, Barcelona, Spain.
  • Pariente JA; Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain.
  • Blanco A; Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM), c/Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain.
  • Garcia PD; Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM), c/Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain.
  • Lopez C; Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain.
  • Sotomayor-Torres CM; Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM), c/Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain.
Small ; 15(52): e1905290, 2019 Dec.
Article en En | MEDLINE | ID: mdl-31650687
ABSTRACT
The regulation of temperature is a major energy-consuming process of humankind. Today, around 15% of the global-energy consumption is dedicated to refrigeration and this figure is predicted to triple by 2050, thus linking global warming and cooling needs in a worrying negative feedback-loop. Here, an inexpensive solution is proposed to this challenge based on a single layer of silica microspheres self-assembled on a soda-lime glass. This 2D crystal acts as a visibly translucent thermal-blackbody for above-ambient radiative cooling and can be used to improve the thermal performance of devices that undergo critical heating during operation. The temperature of a silicon wafer is found to be 14 K lower during daytime when covered with the thermal emitter, reaching an average temperature difference of 19 K when the structure is backed with a silver layer. In comparison, the soda-lime glass reference used in the measurements lowers the temperature of the silicon by just 5 K. The cooling power of this simple radiative cooler under direct sunlight is found to be 350 W m-2 when applied to hot surfaces with relative temperatures of 50 K above the ambient. This is crucial to radiatively cool down devices, i.e., solar cells, where an increase in temperature has drastic effects on performance.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2019 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2019 Tipo del documento: Article País de afiliación: España