Hierarchical Hollow-Nanocube Ni-Co Skeleton@MoO3 /MoS2 Hybrids for Improved-Performance Lithium-Ion Batteries.
Chemistry
; 26(9): 2013-2024, 2020 Feb 11.
Article
en En
| MEDLINE
| ID: mdl-31797444
Improving the performance of anode materials for lithium-ion batteries (LIBs) is a hotly debated topic. Herein, hollow Ni-Co skeleton@MoS2 /MoO3 nanocubes (NCM-NCs), with an average size of about 193â
nm, have been synthesized through a facile hydrothermal reaction. Specifically, MoO3 /MoS2 composites are grown on Ni-Co skeletons derived from nickel-cobalt Prussian blue analogue nanocubes (Ni-Co PBAs). The Ni-Co PBAs were synthesized through a precipitation method and utilized as self-templates that provided a larger specific surface area for the adhesion of MoO3 /MoS2 composites. According to Raman spectroscopy results, as-obtained defect-rich MoS2 is confirmed to be a metallic 1T-phase MoS2 . Furthermore, the average particle size of Ni-Co PBAs (≈43â
nm) is only about one-tenth of the previously reported particle size (≈400â
nm). If assessed as anodes of LIBs, the hollow NCM-NC hybrids deliver an excellent rate performance and superior cycling performance (with an initial discharge capacity of 1526.3â
mAh g-1 and up to 1720.6â
mAh g-1 after 317 cycles under a current density of 0.2â
A g-1 ). Meanwhile, ultralong cycling life is retained, even at high current densities (776.6â
mAh g-1 at 2â
A g-1 after 700 cycles and 584.8â
mAh g-1 at 5â
A g-1 after 800 cycles). Moreover, at a rate of 1â
A g-1 , the average specific capacity is maintained at 661â
mAh g-1 . Thus, the hierarchical hollow NCM-NC hybrids with excellent electrochemical performance are a promising anode material for LIBs.
Texto completo:
1
Bases de datos:
MEDLINE
Idioma:
En
Revista:
Chemistry
Asunto de la revista:
QUIMICA
Año:
2020
Tipo del documento:
Article