Your browser doesn't support javascript.
loading
Determining the pathogenicity of CFTR missense variants: Multiple comparisons of in silico predictors and variant annotation databases.
Michels, Marcus; Matte, Ursula; Fraga, Lucas Rosa; Mancuso, Aline Castello Branco; Ligabue-Braun, Rodrigo; Berneira, Elias Figueroa Rodrigues; Siebert, Marina; Sanseverino, Maria Teresa Vieira.
Afiliación
  • Michels M; Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
  • Matte U; Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
  • Fraga LR; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.
  • Mancuso ACB; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
  • Ligabue-Braun R; Grupo de Pesquisa e Pós-Graduação, Hospital de Clínicas de Porto Alegre, RS, Brazil.
  • Berneira EFR; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
  • Siebert M; Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
  • Sanseverino MTV; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.
Genet Mol Biol ; 42(3): 560-570, 2019.
Article en En | MEDLINE | ID: mdl-31808782
Pathogenic variants in the Cystic Fibrosis Transmembrane Conductance Regulator gene (CFTR) are responsible for cystic fibrosis (CF), the commonest monogenic autosomal recessive disease, and CFTR-related disorders in infants and youth. Diagnosis of such diseases relies on clinical, functional, and molecular studies. To date, over 2,000 variants have been described on CFTR (~40% missense). Since few of them have confirmed pathogenicity, in silico analysis could help molecular diagnosis and genetic counseling. Here, the pathogenicity of 779 CFTR missense variants was predicted by consensus predictor PredictSNP and compared to annotations on CFTR2 and ClinVar. Sensitivity and specificity analysis was divided into modeling and validation phases using just variants annotated on CFTR2 and/or ClinVar that were not in the validation datasets of the analyzed predictors. After validation phase, MAPP and PhDSNP achieved maximum specificity but low sensitivity. Otherwise, SNAP had maximum sensitivity but null specificity. PredictSNP, PolyPhen-1, PolyPhen-2, SIFT, nsSNPAnalyzer had either low sensitivity or specificity, or both. Results showed that most predictors were not reliable when analyzing CFTR missense variants, ratifying the importance of clinical information when asserting the pathogenicity of CFTR missense variants. Our results should contribute to clarify decision making when classifying the pathogenicity of CFTR missense variants.

Texto completo: 1 Bases de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Genet Mol Biol Año: 2019 Tipo del documento: Article País de afiliación: Brasil

Texto completo: 1 Bases de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Genet Mol Biol Año: 2019 Tipo del documento: Article País de afiliación: Brasil