Your browser doesn't support javascript.
loading
Homologous recombination repair intermediates promote efficient de novo telomere addition at DNA double-strand breaks.
Davé, Anoushka; Pai, Chen-Chun; Durley, Samuel C; Hulme, Lydia; Sarkar, Sovan; Wee, Boon-Yu; Prudden, John; Tinline-Purvis, Helen; Cullen, Jason K; Walker, Carol; Watson, Adam; Carr, Antony M; Murray, Johanne M; Humphrey, Timothy C.
Afiliación
  • Davé A; CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
  • Pai CC; Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Sussex BN1 9RQ, UK.
  • Durley SC; CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
  • Hulme L; CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
  • Sarkar S; Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Sussex BN1 9RQ, UK.
  • Wee BY; CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
  • Prudden J; CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
  • Tinline-Purvis H; CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
  • Cullen JK; CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
  • Walker C; CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
  • Watson A; CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
  • Carr AM; QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia.
  • Murray JM; CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
  • Humphrey TC; Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Sussex BN1 9RQ, UK.
Nucleic Acids Res ; 48(3): 1271-1284, 2020 02 20.
Article en En | MEDLINE | ID: mdl-31828313
The healing of broken chromosomes by de novo telomere addition, while a normal developmental process in some organisms, has the potential to cause extensive loss of heterozygosity, genetic disease, or cell death. However, it is unclear how de novo telomere addition (dnTA) is regulated at DNA double-strand breaks (DSBs). Here, using a non-essential minichromosome in fission yeast, we identify roles for the HR factors Rqh1 helicase, in concert with Rad55, in suppressing dnTA at or near a DSB. We find the frequency of dnTA in rqh1Δ rad55Δ cells is reduced following loss of Exo1, Swi5 or Rad51. Strikingly, in the absence of the distal homologous chromosome arm dnTA is further increased, with nearly half of the breaks being healed in rqh1Δ rad55Δ or rqh1Δ exo1Δ cells. These findings provide new insights into the genetic context of highly efficient dnTA within HR intermediates, and how such events are normally suppressed to maintain genome stability.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Telómero / ADN Helicasas / Proteínas de Schizosaccharomyces pombe / Proteínas de Unión al ADN / Reparación del ADN por Recombinación Tipo de estudio: Prognostic_studies Idioma: En Revista: Nucleic Acids Res Año: 2020 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Telómero / ADN Helicasas / Proteínas de Schizosaccharomyces pombe / Proteínas de Unión al ADN / Reparación del ADN por Recombinación Tipo de estudio: Prognostic_studies Idioma: En Revista: Nucleic Acids Res Año: 2020 Tipo del documento: Article