Your browser doesn't support javascript.
loading
Proteomic Analysis of Quercetin-Treated K562 Cells.
Brisdelli, Fabrizia; Di Francesco, Laura; Giorgi, Alessandra; Lizzi, Anna Rita; Luzi, Carla; Mignogna, Giuseppina; Bozzi, Argante; Schininà, M Eugenia.
Afiliación
  • Brisdelli F; Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
  • Di Francesco L; Department of Biochemical Sciences, Sapienza, University of Rome, 00185 Rome, Italy.
  • Giorgi A; Department of Biochemical Sciences, Sapienza, University of Rome, 00185 Rome, Italy.
  • Lizzi AR; Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
  • Luzi C; Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
  • Mignogna G; Department of Biochemical Sciences, Sapienza, University of Rome, 00185 Rome, Italy.
  • Bozzi A; Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
  • Schininà ME; Department of Biochemical Sciences, Sapienza, University of Rome, 00185 Rome, Italy.
Int J Mol Sci ; 21(1)2019 Dec 19.
Article en En | MEDLINE | ID: mdl-31861640
Among natural products under investigation for their additive potential in cancer prevention and treatment, the flavonoid quercetin has received attention for its effects on the cell cycle arrest and apoptosis. In the past, we addressed this issue in K562 cells, a cellular model of the human chronic myeloid leukemia. Here, we applied stable isotope labeling by amino acids in cell culture (SILAC) proteomics with the aim to increase knowledge on the regulative and metabolic pathways modulated by quercetin in these cells. After 24 h of quercetin treatment, we observed that apoptosis was not completely established, thus we selected this time range to capture quantitative data. As a result, we were able to achieve a robust identification of 1703 proteins, and to measure fold changes between quercetin-treated and untreated cells for 1206 proteins. Through a bioinformatics functional analysis on a subset of 112 proteins, we propose that the apoptotic phenotype of K562 cells entails a significant modulation of the translational machinery, RNA metabolism, antioxidant defense systems, and enzymes involved in lipid metabolism. Finally, we selected eight differentially expressed proteins, validated their modulated expression in quercetin-treated K562 cells, and discussed their possible role in flavonoid cytotoxicity. This quantitative profiling, performed for the first time on this type of tumor cells upon treatment with a flavonoid, will contribute to revealing the molecular basis of the multiplicity of the effects selectively exerted by quercetin on K562 cells.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Quercetina / Leucemia Mielógena Crónica BCR-ABL Positiva / Proteoma / Proteómica Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Int J Mol Sci Año: 2019 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Quercetina / Leucemia Mielógena Crónica BCR-ABL Positiva / Proteoma / Proteómica Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Int J Mol Sci Año: 2019 Tipo del documento: Article País de afiliación: Italia