Your browser doesn't support javascript.
loading
Regulation of Eosinophil Recruitment and Allergic Airway Inflammation by Tropomyosin Receptor Kinase A.
Dileepan, Mythili; Ge, Xiao Na; Bastan, Idil; Greenberg, Yana G; Liang, Yuying; Sriramarao, P; Rao, Savita P.
Afiliación
  • Dileepan M; Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55455.
  • Ge XN; Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55455.
  • Bastan I; Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55455.
  • Greenberg YG; Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55455.
  • Liang Y; Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55455 liangy@umn.edu psrao@umn.edu.
  • Sriramarao P; Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55455.
  • Rao SP; Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55455.
J Immunol ; 204(3): 682-693, 2020 02 01.
Article en En | MEDLINE | ID: mdl-31871023
Eosinophilia is a hallmark of allergic airway inflammation (AAI). Identifying key molecules and specific signaling pathways that regulate eosinophilic inflammation is critical for development of novel therapeutics. Tropomycin receptor kinase A (TrkA) is the high-affinity receptor for nerve growth factor. AAI is associated with increased expression of TrkA by eosinophils; however, the functional role of TrkA in regulating eosinophil recruitment and contributing to AAI is poorly understood. This study identifies, to our knowledge, a novel mechanism of eotaxin-mediated activation of TrkA and its role in regulating eosinophil recruitment by using a chemical-genetic approach to specifically inhibit TrkA kinase activity with 1-NM-PP1 in TrkAF592A-knock-in (TrkA-KI) eosinophils. Blockade of TrkA by 1-NM-PP1 enhanced eosinophil spreading on VCAM-1 but inhibited eotaxin-1 (CCL11)-mediated eosinophil migration, calcium flux, cell polarization, and ERK1/2 activation, suggesting that TrkA is an important player in the signaling pathway activated by eotaxin-1 during eosinophil migration. Further, blockade of matrix metalloprotease with BB-94 inhibited eotaxin-1-induced TrkA activation and eosinophil migration, additively with 1-NM-PP1, indicating a role for matrix metalloproteases in TrkA activation. TrkA inhibition in Alternaria alternata-challenged TrkA-KI mice markedly inhibited eosinophilia and attenuated various features of AAI. These findings are indicative of a distinctive eotaxin-mediated TrkA-dependent signaling pathway, which, in addition to other TrkA-activating mediators, contributes to eosinophil recruitment during AAI and suggests that targeting the TrkA signaling pathway to inhibit eosinophil recruitment may serve as a therapeutic strategy for management of eosinophilic inflammation in allergic airway disease, including asthma.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Hipersensibilidad Respiratoria / Asma / Receptor trkA / Eosinófilos / Alternaria / Alternariosis / Hipersensibilidad Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: J Immunol Año: 2020 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Hipersensibilidad Respiratoria / Asma / Receptor trkA / Eosinófilos / Alternaria / Alternariosis / Hipersensibilidad Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: J Immunol Año: 2020 Tipo del documento: Article