Your browser doesn't support javascript.
loading
Arsenic Toxicity: Molecular Targets and Therapeutic Agents.
Nurchi, Valeria M; Djordjevic, Aleksandra Buha; Crisponi, Guido; Alexander, Jan; Bjørklund, Geir; Aaseth, Jan.
Afiliación
  • Nurchi VM; Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, 09124 Monserrato-Cagliari, Italy.
  • Djordjevic AB; Department of Toxicology "Akademik Danilo Soldatovic", Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia.
  • Crisponi G; Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, 09124 Monserrato-Cagliari, Italy.
  • Alexander J; Norwegian Institute of Public Health, 0213 Oslo, Norway.
  • Bjørklund G; Council for Nutritional and Environmental Medicine, 8610 Mo i Rana, Norway.
  • Aaseth J; Research Department, Innlandet Hospital Trust, 2380 Brumunddal, Norway.
Biomolecules ; 10(2)2020 02 04.
Article en En | MEDLINE | ID: mdl-32033229
ABSTRACT
High arsenic (As) levels in food and drinking water, or under some occupational conditions, can precipitate chronic toxicity and in some cases cancer. Millions of people are exposed to unacceptable amounts of As through drinking water and food. Highly exposed individuals may develop acute, subacute, or chronic signs of poisoning, characterized by skin lesions, cardiovascular symptoms, and in some cases, multi-organ failure. Inorganic arsenite(III) and organic arsenicals with the general formula R-As2+ are bound tightly to thiol groups, particularly to vicinal dithiols such as dihydrolipoic acid (DHLA), which together with some seleno-enzymes constitute vulnerable targets for the toxic action of As. In addition, R-As2+-compounds have even higher affinity to selenol groups, e.g., in thioredoxin reductase that also possesses a thiol group vicinal to the selenol. Inhibition of this and other ROS scavenging seleno-enzymes explain the oxidative stress associated with arsenic poisoning. The development of chelating agents, such as the dithiols BAL (dimercaptopropanol), DMPS (dimercapto-propanesulfonate) and DMSA (dimercaptosuccinic acid), took advantage of the fact that As had high affinity towards vicinal dithiols. Primary prevention by reducing exposure of the millions of people exposed to unacceptable As levels should be the prioritized strategy. However, in acute and subacute and even some cases with chronic As poisonings chelation treatment with therapeutic dithiols, in particular DMPS appears promising as regards alleviation of symptoms. In acute cases, initial treatment with BAL combined with DMPS should be considered.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Arsénico / Quelantes / Intoxicación por Arsénico / Antídotos Tipo de estudio: Etiology_studies Límite: Animals / Humans Idioma: En Revista: Biomolecules Año: 2020 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Arsénico / Quelantes / Intoxicación por Arsénico / Antídotos Tipo de estudio: Etiology_studies Límite: Animals / Humans Idioma: En Revista: Biomolecules Año: 2020 Tipo del documento: Article País de afiliación: Italia