Your browser doesn't support javascript.
loading
Self-Assembly of a Catalytically Active Lipopeptide and Its Incorporation into Cubosomes.
Castelletto, Valeria; Edwards-Gayle, Charlotte J C; Hamley, Ian W; Pelin, Juliane N B D; Alves, Wendel A; Aguilar, Andrea M; Seitsonen, Jani; Ruokolainen, Janne.
Afiliación
  • Castelletto V; Department of Chemistry, University of Reading, Reading RG6 6AD, United Kingdom.
  • Edwards-Gayle CJC; Department of Chemistry, University of Reading, Reading RG6 6AD, United Kingdom.
  • Hamley IW; Department of Chemistry, University of Reading, Reading RG6 6AD, United Kingdom.
  • Pelin JNBD; Centro de Ciências Naturais e Humanas, Federal do ABC, Santo André 09210-580, Brazil.
  • Alves WA; Centro de Ciências Naturais e Humanas, Federal do ABC, Santo André 09210-580, Brazil.
  • Aguilar AM; Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09972-270, Brazil.
  • Seitsonen J; Nanomicroscopy Center, Aalto University, Puumiehenkuja 2, Espoo FIN-02150, Finland.
  • Ruokolainen J; Nanomicroscopy Center, Aalto University, Puumiehenkuja 2, Espoo FIN-02150, Finland.
ACS Appl Bio Mater ; 2(8): 3639-3647, 2019 Aug 19.
Article en En | MEDLINE | ID: mdl-32064461
ABSTRACT
The self-assembly and biocatalytic activity of the proline-functionalized lipopeptide PRW-NH-C16 are examined and compared to that of the related PRW-O-C16 lipopeptide, which differs in having an ester linker between the lipid chain and tripeptide headgroup instead of an amide linker. Lipopeptide PRW-NH-C16 self-assembles into spherical micelles above a critical aggregation concentration, similar to the behavior of PRW-O-C16 reported previously [B. M. Soares et al. Phys. Chem. Chem. Phys., 2017, 19, 1181-1189]. However, PRW-NH-C16 shows an improved catalytic activity in a model aldol reaction. In addition, we explore the incorporation of the biocatalytic lipopeptide into lipid cubosomes. SAXS shows that increasing lipopeptide concentration leads to an expansion of the monoolein cubosome lattice spacing and a loss of long-range cubic order as the lipopeptide is encapsulated in the cubosomes. At higher loadings of lipopeptide, reduced cubosome formation is observed at the expense of vesicle formation. Our results show that the peptide-lipid chain linker does not influence self-assembly but does impart an improved biocatalytic activity. Furthermore, we show that lipopeptides can be incorporated into lipid cubosomes, leading to restructuring into vesicles at high loadings. These findings point the way toward the future development of bioactive lipopeptide assemblies and slow release cubosome-based delivery systems.

Texto completo: 1 Bases de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: ACS Appl Bio Mater Año: 2019 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Bases de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: ACS Appl Bio Mater Año: 2019 Tipo del documento: Article País de afiliación: Reino Unido