Your browser doesn't support javascript.
loading
Deep Learning-driven research for drug discovery: Tackling Malaria.
Neves, Bruno J; Braga, Rodolpho C; Alves, Vinicius M; Lima, Marília N N; Cassiano, Gustavo C; Muratov, Eugene N; Costa, Fabio T M; Andrade, Carolina Horta.
Afiliación
  • Neves BJ; Laboratory of Cheminformatics, University Center of Anápolis - UniEVANGÉLICA, Anápolis, Goiás, Brazil.
  • Braga RC; LabMol - Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil.
  • Alves VM; InsilicAll, São Paulo, São Paulo, Brazil.
  • Lima MNN; LabMol - Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil.
  • Cassiano GC; Laboratory for Molecular Modeling, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States of America.
  • Muratov EN; LabMol - Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil.
  • Costa FTM; Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil.
  • Andrade CH; Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisboa, Portugal.
PLoS Comput Biol ; 16(2): e1007025, 2020 02.
Article en En | MEDLINE | ID: mdl-32069285
ABSTRACT
Malaria is an infectious disease that affects over 216 million people worldwide, killing over 445,000 patients annually. Due to the constant emergence of parasitic resistance to the current antimalarial drugs, the discovery of new drug candidates is a major global health priority. Aiming to make the drug discovery processes faster and less expensive, we developed binary and continuous Quantitative Structure-Activity Relationships (QSAR) models implementing deep learning for predicting antiplasmodial activity and cytotoxicity of untested compounds. Then, we applied the best models for a virtual screening of a large database of chemical compounds. The top computational predictions were evaluated experimentally against asexual blood stages of both sensitive and multi-drug-resistant Plasmodium falciparum strains. Among them, two compounds, LabMol-149 and LabMol-152, showed potent antiplasmodial activity at low nanomolar concentrations (EC50 <500 nM) and low cytotoxicity in mammalian cells. Therefore, the computational approach employing deep learning developed here allowed us to discover two new families of potential next generation antimalarial agents, which are in compliance with the guidelines and criteria for antimalarial target candidates.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Descubrimiento de Drogas / Aprendizaje Profundo / Malaria / Antimaláricos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2020 Tipo del documento: Article País de afiliación: Brasil

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Descubrimiento de Drogas / Aprendizaje Profundo / Malaria / Antimaláricos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2020 Tipo del documento: Article País de afiliación: Brasil