Your browser doesn't support javascript.
loading
The microtubule-associated histone methyltransferase SET8, facilitated by transcription factor LSF, methylates α-tubulin.
Chin, Hang Gyeong; Esteve, Pierre-Olivier; Ruse, Cristian; Lee, Jiyoung; Schaus, Scott E; Pradhan, Sriharsa; Hansen, Ulla.
Afiliación
  • Chin HG; New England Biolabs, Ipswich, Massachusetts 01938.
  • Esteve PO; MCBB Graduate Program, Graduate School of Arts and Sciences, Boston University, Boston, Massachusetts 02215.
  • Ruse C; New England Biolabs, Ipswich, Massachusetts 01938.
  • Lee J; New England Biolabs, Ipswich, Massachusetts 01938.
  • Schaus SE; Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Ipsin-gil, Jeongeup-si, Jeollabuk-do 56212, South Korea.
  • Pradhan S; Center for Molecular Discovery, Boston University, Boston, Massachusetts 02215.
  • Hansen U; New England Biolabs, Ipswich, Massachusetts 01938.
J Biol Chem ; 295(14): 4748-4759, 2020 04 03.
Article en En | MEDLINE | ID: mdl-32111740
ABSTRACT
Microtubules are cytoskeletal structures critical for mitosis, cell motility, and protein and organelle transport and are a validated target for anticancer drugs. However, how tubulins are regulated and recruited to support these distinct cellular processes is incompletely understood. Posttranslational modifications of tubulins are proposed to regulate microtubule function and dynamics. Although many of these modifications have been investigated, only one prior study reports tubulin methylation and an enzyme responsible for this methylation. Here we used in vitro radiolabeling, MS, and immunoblotting approaches to monitor protein methylation and immunoprecipitation, immunofluorescence, and pulldown approaches to measure protein-protein interactions. We demonstrate that N-lysine methyltransferase 5A (KMT5A or SET8/PR-Set7), which methylates lysine 20 in histone H4, bound α-tubulin and methylated it at a specific lysine residue, Lys311 Furthermore, late SV40 factor (LSF)/CP2, a known transcription factor, bound both α-tubulin and SET8 and enhanced SET8-mediated α-tubulin methylation in vitro In addition, we found that the ability of LSF to facilitate this methylation is countered by factor quinolinone inhibitor 1 (FQI1), a specific small-molecule inhibitor of LSF. These findings suggest the general model that microtubule-associated proteins, including transcription factors, recruit or stimulate protein-modifying enzymes to target tubulins. Moreover, our results point to dual functions for SET8 and LSF not only in chromatin regulation but also in cytoskeletal modification.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Factores de Transcripción / Tubulina (Proteína) / N-Metiltransferasa de Histona-Lisina / Proteínas de Unión al ADN Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: J Biol Chem Año: 2020 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Factores de Transcripción / Tubulina (Proteína) / N-Metiltransferasa de Histona-Lisina / Proteínas de Unión al ADN Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: J Biol Chem Año: 2020 Tipo del documento: Article