Hereditary hemochromatosis disrupts uric acid homeostasis and causes hyperuricemia via altered expression/activity of xanthine oxidase and ABCG2.
Biochem J
; 477(8): 1499-1513, 2020 04 30.
Article
en En
| MEDLINE
| ID: mdl-32239172
Hereditary hemochromatosis (HH) is mostly caused by mutations in the iron-regulatory gene HFE. The disease is associated with iron overload, resulting in liver cirrhosis/cancer, cardiomegaly, kidney dysfunction, diabetes, and arthritis. Fe2+-induced oxidative damage is suspected in the etiology of these symptoms. Here we examined, using Hfe-/- mice, whether disruption of uric acid (UA) homeostasis plays any role in HH-associated arthritis. We detected elevated levels of UA in serum and intestine in Hfe-/- mice compared with controls. Though the expression of xanthine oxidase, which generates UA, was not different in liver and intestine between wild type and Hfe-/- mice, the enzymatic activity was higher in Hfe-/- mice. We then examined various transporters involved in UA absorption/excretion. Glut9 expression did not change; however, there was an increase in Mrp4 and a decrease in Abcg2 in Hfe-/- mice. As ABCG2 mediates intestinal excretion of UA and mutations in ABCG2 cause hyperuricemia, we examined the potential connection between iron and ABCG2. We found p53-responsive elements in hABCG2 promoter and confirmed with chromatin immunoprecipitation that p53 binds to this promoter. p53 protein was reduced in Hfe-/- mouse intestine. p53 is a heme-binding protein and p53-heme complex is subjected to proteasomal degradation. We conclude that iron/heme overload in HH increases xanthine oxidase activity and also promotes p53 degradation resulting in decreased ABCG2 expression. As a result, systemic UA production is increased and intestinal excretion of UA via ABCG2 is decreased, causing serum and tissue accumulation of UA, a potential factor in the etiology of HH-associated arthritis.
Palabras clave
Texto completo:
1
Bases de datos:
MEDLINE
Asunto principal:
Ácido Úrico
/
Xantina Oxidasa
/
Hiperuricemia
/
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2
/
Hemocromatosis
Tipo de estudio:
Etiology_studies
Límite:
Animals
/
Female
/
Humans
/
Male
Idioma:
En
Revista:
Biochem J
Año:
2020
Tipo del documento:
Article
País de afiliación:
Estados Unidos