Your browser doesn't support javascript.
loading
Stochastic modeling reveals kinetic heterogeneity in post-replication DNA methylation.
Busto-Moner, Luis; Morival, Julien; Ren, Honglei; Fahim, Arjang; Reitz, Zachary; Downing, Timothy L; Read, Elizabeth L.
Afiliación
  • Busto-Moner L; Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain.
  • Morival J; Dept. of Chemical & Biomolecular Engineering, University of California, Irvine, California, United States of America.
  • Ren H; Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America.
  • Fahim A; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California, United States of America.
  • Reitz Z; Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America.
  • Downing TL; Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America.
  • Read EL; Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America.
PLoS Comput Biol ; 16(4): e1007195, 2020 04.
Article en En | MEDLINE | ID: mdl-32275652
ABSTRACT
DNA methylation is a heritable epigenetic modification that plays an essential role in mammalian development. Genomic methylation patterns are dynamically maintained, with DNA methyltransferases mediating inheritance of methyl marks onto nascent DNA over cycles of replication. A recently developed experimental technique employing immunoprecipitation of bromodeoxyuridine labeled nascent DNA followed by bisulfite sequencing (Repli-BS) measures post-replication temporal evolution of cytosine methylation, thus enabling genome-wide monitoring of methylation maintenance. In this work, we combine statistical analysis and stochastic mathematical modeling to analyze Repli-BS data from human embryonic stem cells. We estimate site-specific kinetic rate constants for the restoration of methyl marks on >10 million uniquely mapped cytosines within the CpG (cytosine-phosphate-guanine) dinucleotide context across the genome using Maximum Likelihood Estimation. We find that post-replication remethylation rate constants span approximately two orders of magnitude, with half-lives of per-site recovery of steady-state methylation levels ranging from shorter than ten minutes to five hours and longer. Furthermore, we find that kinetic constants of maintenance methylation are correlated among neighboring CpG sites. Stochastic mathematical modeling provides insight to the biological mechanisms underlying the inference results, suggesting that enzyme processivity and/or collaboration can produce the observed kinetic correlations. Our combined statistical/mathematical modeling approach expands the utility of genomic datasets and disentangles heterogeneity in methylation patterns arising from replication-associated temporal dynamics versus stable cell-to-cell differences.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Biología Computacional / Metilación de ADN Tipo de estudio: Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2020 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Biología Computacional / Metilación de ADN Tipo de estudio: Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2020 Tipo del documento: Article País de afiliación: España