Your browser doesn't support javascript.
loading
Structural Characterization of an ACP from Thermotoga maritima: Insights into Hyperthermal Adaptation.
Lee, Yeongjoon; Jang, Ahjin; Jeong, Min-Cheol; Park, Nuri; Park, Jungwoo; Lee, Woo Cheol; Cheong, Chaejoon; Kim, Yangmee.
Afiliación
  • Lee Y; Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
  • Jang A; Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
  • Jeong MC; Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
  • Park N; Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
  • Park J; Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
  • Lee WC; Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
  • Cheong C; Magnetic Resonance Team, Korea Basic Science Institute, Ochang 28199, Korea.
  • Kim Y; Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
Int J Mol Sci ; 21(7)2020 Apr 09.
Article en En | MEDLINE | ID: mdl-32283632
Thermotoga maritima, a deep-branching hyperthermophilic bacterium, expresses an extraordinarily stable Thermotoga maritima acyl carrier protein (Tm-ACP) that functions as a carrier in the fatty acid synthesis system at near-boiling aqueous environments. Here, to understand the hyperthermal adaptation of Tm-ACP, we investigated the structure and dynamics of Tm-ACP by nuclear magnetic resonance (NMR) spectroscopy. The melting temperature of Tm-ACP (101.4 °C) far exceeds that of other ACPs, owing to extensive ionic interactions and tight hydrophobic packing. The D59 residue, which replaces Pro/Ser of other ACPs, mediates ionic clustering between helices III and IV. This creates a wide pocket entrance to facilitate the accommodation of long acyl chains required for hyperthermal adaptation of the T. maritima cell membrane. Tm-ACP is revealed to be the first ACP that harbor an amide proton hyperprotected against hydrogen/deuterium exchange for I15. The hydrophobic interactions mediated by I15 appear to be the key driving forces of the global folding process of Tm-ACP. Our findings provide insights into the structural basis of the hyperthermal adaptation of ACP, which might have allowed T. maritima to survive in hot ancient oceans.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Temperatura / Proteínas Bacterianas / Proteína Transportadora de Acilo / Adaptación Biológica / Modelos Moleculares / Thermotoga maritima Tipo de estudio: Prognostic_studies Idioma: En Revista: Int J Mol Sci Año: 2020 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Temperatura / Proteínas Bacterianas / Proteína Transportadora de Acilo / Adaptación Biológica / Modelos Moleculares / Thermotoga maritima Tipo de estudio: Prognostic_studies Idioma: En Revista: Int J Mol Sci Año: 2020 Tipo del documento: Article