Your browser doesn't support javascript.
loading
The stress response protein REDD1 promotes diabetes-induced oxidative stress in the retina by Keap1-independent Nrf2 degradation.
Miller, William P; Sunilkumar, Siddharth; Giordano, Joseph F; Toro, Allyson L; Barber, Alistair J; Dennis, Michael D.
Afiliación
  • Miller WP; Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033.
  • Sunilkumar S; Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033.
  • Giordano JF; Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033.
  • Toro AL; Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033.
  • Barber AJ; Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033; Department of Ophthalmology, Penn State College of Medicine, Hershey, Pennsylvania 17033.
  • Dennis MD; Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033; Department of Ophthalmology, Penn State College of Medicine, Hershey, Pennsylvania 17033. Electronic address: mdennis@psu.edu.
J Biol Chem ; 295(21): 7350-7361, 2020 05 22.
Article en En | MEDLINE | ID: mdl-32295843
The transcription factor nuclear factor erythroid-2-related factor 2 (Nrf2) plays a critical role in reducing oxidative stress by promoting the expression of antioxidant genes. Both individuals with diabetes and preclinical diabetes models exhibit evidence of a defect in retinal Nrf2 activation. We recently demonstrated that increased expression of the stress response protein regulated in development and DNA damage 1 (REDD1) is necessary for the development of oxidative stress in the retina of streptozotocin-induced diabetic mice. In the present study, we tested the hypothesis that REDD1 suppresses the retinal antioxidant response to diabetes by repressing Nrf2 function. We found that REDD1 ablation enhances Nrf2 DNA-binding activity in the retina and that the suppressive effect of diabetes on Nrf2 activity is absent in the retina of REDD1-deficient mice compared with WT. In human MIO-M1 Müller cell cultures, REDD1 deletion prevented oxidative stress in response to hyperglycemic conditions, and this protective effect required Nrf2. REDD1 suppressed Nrf2 stability by promoting its proteasomal degradation independently of Nrf2's interaction with Kelch-like ECH-associated protein 1 (Keap1), but REDD1-mediated Nrf2 degradation required glycogen synthase kinase 3 (GSK3) activity and Ser-351/Ser-356 of Nrf2. Diabetes diminished inhibitory phosphorylation of glycogen synthase kinase 3ß (GSK3ß) at Ser-9 in the retina of WT mice but not in REDD1-deficient mice. Pharmacological inhibition of GSK3 enhanced Nrf2 activity and prevented oxidative stress in the retina of diabetic mice. The findings support a model wherein hyperglycemia-induced REDD1 blunts the Nrf2 antioxidant response to diabetes by activating GSK3, which, in turn, phosphorylates Nrf2 to promote its degradation.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Retina / Factores de Transcripción / Estrés Oxidativo / Diabetes Mellitus Experimental / Factor 2 Relacionado con NF-E2 / Proteolisis / Proteína 1 Asociada A ECH Tipo Kelch Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: J Biol Chem Año: 2020 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Retina / Factores de Transcripción / Estrés Oxidativo / Diabetes Mellitus Experimental / Factor 2 Relacionado con NF-E2 / Proteolisis / Proteína 1 Asociada A ECH Tipo Kelch Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: J Biol Chem Año: 2020 Tipo del documento: Article