Your browser doesn't support javascript.
loading
CompuCell3D Simulations Reproduce Mesenchymal Cell Migration on Flat Substrates.
Fortuna, Ismael; Perrone, Gabriel C; Krug, Monique S; Susin, Eduarda; Belmonte, Julio M; Thomas, Gilberto L; Glazier, James A; de Almeida, Rita M C.
Afiliación
  • Fortuna I; Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
  • Perrone GC; Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
  • Krug MS; Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
  • Susin E; Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
  • Belmonte JM; Biocomplexity Institute and Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana; Department of Physics, North Carolina State University, Raleigh, North Carolina.
  • Thomas GL; Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil. Electronic address: glt@if.furgs.br.
  • Glazier JA; Biocomplexity Institute and Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana.
  • de Almeida RMC; Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Instituto Nacional de Ciência e Tecnologia, Sistemas Complexos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Program de Pós Graduação em Bioinformática, Uni
Biophys J ; 118(11): 2801-2815, 2020 06 02.
Article en En | MEDLINE | ID: mdl-32407685
Mesenchymal cell crawling is a critical process in normal development, in tissue function, and in many diseases. Quantitatively predictive numerical simulations of cell crawling thus have multiple scientific, medical, and technological applications. However, we still lack a low-computational-cost approach to simulate mesenchymal three-dimensional (3D) cell crawling. Here, we develop a computationally tractable 3D model (implemented as a simulation in the CompuCell3D simulation environment) of mesenchymal cells crawling on a two-dimensional substrate. The Fürth equation, the usual characterization of mean-squared displacement (MSD) curves for migrating cells, describes a motion in which, for increasing time intervals, cell movement transitions from a ballistic to a diffusive regime. Recent experiments have shown that for very short time intervals, cells exhibit an additional fast diffusive regime. Our simulations' MSD curves reproduce the three experimentally observed temporal regimes, with fast diffusion for short time intervals, slow diffusion for long time intervals, and intermediate time -interval-ballistic motion. The resulting parameterization of the trajectories for both experiments and simulations allows the definition of time- and length scales that translate between computational and laboratory units. Rescaling by these scales allows direct quantitative comparisons among MSD curves and between velocity autocorrelation functions from experiments and simulations. Although our simulations replicate experimentally observed spontaneous symmetry breaking, short-timescale diffusive motion, and spontaneous cell-motion reorientation, their computational cost is low, allowing their use in multiscale virtual-tissue simulations. Comparisons between experimental and simulated cell motion support the hypothesis that short-time actomyosin dynamics affects longer-time cell motility. The success of the base cell-migration simulation model suggests its future application in more complex situations, including chemotaxis, migration through complex 3D matrices, and collective cell motion.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Modelos Biológicos Idioma: En Revista: Biophys J Año: 2020 Tipo del documento: Article País de afiliación: Brasil

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Modelos Biológicos Idioma: En Revista: Biophys J Año: 2020 Tipo del documento: Article País de afiliación: Brasil