Your browser doesn't support javascript.
loading
Uncovering the Triplet Ground State of Triangular Graphene Nanoflakes Engineered with Atomic Precision on a Metal Surface.
Li, Jingcheng; Sanz, Sofia; Castro-Esteban, Jesus; Vilas-Varela, Manuel; Friedrich, Niklas; Frederiksen, Thomas; Peña, Diego; Pascual, Jose Ignacio.
Afiliación
  • Li J; CIC Nanogune BRTA, 20018 Donostia-San Sebastián, Spain.
  • Sanz S; Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain.
  • Castro-Esteban J; Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain.
  • Vilas-Varela M; Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain.
  • Friedrich N; CIC Nanogune BRTA, 20018 Donostia-San Sebastián, Spain.
  • Frederiksen T; Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain.
  • Peña D; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain.
  • Pascual JI; Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain.
Phys Rev Lett ; 124(17): 177201, 2020 May 01.
Article en En | MEDLINE | ID: mdl-32412280
ABSTRACT
Graphene can develop large magnetic moments in custom-crafted open-shell nanostructures such as triangulene, a triangular piece of graphene with zigzag edges. Current methods of engineering graphene nanosystems on surfaces succeeded in producing atomically precise open-shell structures, but demonstration of their net spin remains elusive to date. Here, we fabricate triangulenelike graphene systems and demonstrate that they possess a spin S=1 ground state. Scanning tunneling spectroscopy identifies the fingerprint of an underscreened S=1 Kondo state on these flakes at low temperatures, signaling the dominant ferromagnetic interactions between two spins. Combined with simulations based on the meanfield Hubbard model, we show that this S=1 π paramagnetism is robust and can be turned into an S=1/2 state by additional H atoms attached to the radical sites. Our results demonstrate that π paramagnetism of high-spin graphene flakes can survive on surfaces, opening the door to study the quantum behavior of interacting π spins in graphene systems.

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2020 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2020 Tipo del documento: Article País de afiliación: España