Your browser doesn't support javascript.
loading
Robust banded protoxylem pattern formation through microtubule-based directional ROP diffusion restriction.
Jacobs, Bas; Molenaar, Jaap; Deinum, Eva E.
Afiliación
  • Jacobs B; Biometris, Department for Mathematical and Statistical Methods, Wageningen University, Wageningen, The Netherlands.
  • Molenaar J; Biometris, Department for Mathematical and Statistical Methods, Wageningen University, Wageningen, The Netherlands.
  • Deinum EE; Biometris, Department for Mathematical and Statistical Methods, Wageningen University, Wageningen, The Netherlands. Electronic address: eva.deinum@wur.nl.
J Theor Biol ; 502: 110351, 2020 10 07.
Article en En | MEDLINE | ID: mdl-32505828
ABSTRACT
In plant vascular tissue development, different cell wall patterns are formed, offering different mechanical properties optimised for different growth stages. Critical in these patterning processes are Rho of Plants (ROP) proteins, a class of evolutionarily conserved small GTPase proteins responsible for local membrane domain formation in many organisms. While te spotted metaxylem pattern can easily be understood as a result of a Turing-style reaction-diffusion mechanism, it remains an open question how the consistent orientation of evenly spaced bands and spirals as found in protoxylem is achieved. We hypothesise that this orientation results from an interaction between ROPs and an array of transversely oriented cortical microtubules that acts as a directional diffusion barrier. Here, we explore this hypothesis using partial differential equation models with anisotropic ROP diffusion and show that a horizontal microtubule array acting as a vertical diffusion barrier to active ROP can yield a horizontally banded ROP pattern. We then study the underlying mechanism in more detail, finding that it can only orient curved pattern features but not straight lines. This implies that, once formed, banded and spiral patterns cannot be reoriented by this mechanism. Finally, we observe that ROPs and microtubules together only form ultimately static patterns if the interaction is implemented with sufficient biological realism.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Arabidopsis / Proteínas de Arabidopsis Tipo de estudio: Prognostic_studies Idioma: En Revista: J Theor Biol Año: 2020 Tipo del documento: Article País de afiliación: Países Bajos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Arabidopsis / Proteínas de Arabidopsis Tipo de estudio: Prognostic_studies Idioma: En Revista: J Theor Biol Año: 2020 Tipo del documento: Article País de afiliación: Países Bajos